PRACTICAL POINT REGARDING EXTRACORPOREAL THERAPIES FOR AKI

Theerasak tangwonglert, MD

CONTENTS : ACUTE KIDNEY INJURY

- Indications of extracorporeal therapies
- Time to start extracorporeal therapies
- Modalities of extracorporeal therapies
- How to prescribe acute intermittent hemodialysis

- A : Metabolic <u>A</u>cidosis
- **E** : <u>E</u>lectrolyte imbalance

Hyperkalemia
Hypercalcemia/hypocalcemia
Hypernatremia/hyponatremia
Hyperphosphatemia
Hypermagnesemia

I : Intoxication / Ingestion of toxic substances

Molecular weight
Protein binding
Volume of distribution
Contribution of extracorporeal toxin removal relative to endogenous clearance

Modality	Toxin Molecular Mass (Da)	Toxin Volume of Distribution (L/kg)	Protein Binding of Toxin	Examples of Toxins Amenable to Therapy	Primary Limitations of Therapy
Hemodialysis	Up to 10,000– 15,000	≤1.5–2	≤80%	Salicylates, toxic alcohols, lithium	Hemodynamic stability
HCO filter HD	Up to 50,000	≤1.5–2	≤80%	Small peptide therapeutics; any therapy amenable to HD	Limited availability Limited role in poisoning
CRRT	Up to 15,000– 25,000	≤1.5–2	≤80%	Lithium	Slow toxin clearance (excepting toxins with slow redistribution)
Hemopertusion	Unclear, but high	≤1 L/kg	Any	Valproic acid, carbamazepine	Limited availability Clotting Hypocalcemia
Plasma exchange	No limit	≤1 L/kg	Any	Monoclonal antibodies, arsine	Limited availability Very slow clearance

CJASN 14: 1408–1415, 2019

U : Signs of <u>U</u>remia hypercatabolic state <u>BUN 70-80 mg/dl</u> nonhypercatabolic state <u>BUN 100 mg/dl</u>

- Non-renal indications
 - Nutritional support
 - Immunomodulation
 - Respiratory acidosis
 - Volume homeostasis in multi-organ failure

TIME TO START EXTRACORPOREAL THERAPIES

	ELAIN	ΑΚΙΚΙ	IDEAL-ICU	STARRT-AKI	AKIKI-2	FST Trial
Location	Germany Single center <i>n</i> = 231	France Multicenter <i>n</i> = 620	France Multicenter <i>n</i> = 488	Multinational Multicenter <i>n</i> = 2927	France Multicenter <i>n</i> = 278	Thailand Multicenter <i>n</i> = 297
Inclusion criteria	KDIGO Stage 2 + NGAL >150 ng/mL	Stage 3 AKI + ventilator (85%) Pressors (85%) Sepsis (56%)	RIFLE Stage F Septic shock + Pressors (100%)	Stage 2 and 3	Stage 3 AKI Oliguria >72 h or BUN 40–50 mmol/L	AKI (any stage) + clinical ATN; FST = NR
Timing of KRT	Early <8 h post-AKI	Early <6 h post-AKI	Early <12 h post-AKI	Early <12 h post-AKI	Delayed <12 h post-AKI	Early <6 h post-AKI
	Late <12 h or no initiation	Late BUN >40 mmol/L Oliguria >72 h life-threatening	Late 48 h postrandomization if no kidney recovery	Late AKI ≥72 h Life threatening	More delayed KRT postponed 1 day, or BUN >50 mmol/L or life- threatening	Standard
% of KRT early vs. late	100% vs. 91%	98% vs. 51%	97% vs. 62%	97% vs. 62%	Delayed (98%) More delayed (79%)	98% vs. 75%
Type of KRT	100% CVVHDF	IHD (55%) CKRT (45%)	IHD (43%) PIKRT/CKRT (57%)	IHD, PIKRT, or CKRT (68%)	<i>Delayed:</i> IHD (60%) CKRT (39%) Both (1%) <i>More delayed</i> : IHD (58%) CKRT 40% Both (3%)	
Mortality early vs. late	60 days: 38.4% vs. 50.4% 90 days: 39.3% vs. 54.75%*	60 days: 48.5% vs. 49.7%	90 days: 58% vs. 54%	90 days: 44% vs. 44%	28 days: 38% vs. 45% 60 days: 44% vs. 55%	28 days: 62.1% vs. 58.3%
Duration of stay in ICU	Not significant: 19 vs. 22 days	Not significant: 13 vs. 13 days	Not significant: 12 vs. 12 days	Lower in Early group	No difference: 18 vs. 16 days	No difference: 12 vs. 13.5 days
Mechanical ventilation days	125 vs. 181 hours	No difference: 7 vs. 6 days	No difference: 2 vs. 3 days	No difference	No difference	No difference: 4 vs. 0.5 days

Comprehensive clinical nephrology 7th ed

	Early ini	itiation	Standard in	nitiation		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
1.1.1 Death at day 30							
Sugahara 2004	2	14	12	14	0.7%	0.17 [0.05 , 0.61]	
Yin 2018	6	33	6	30	1.2%	0.91 [0.33 , 2.52]	
Bouman 2002	20	70	9	36	2.6%	1.14 [0.58 , 2.25]	_
EARLYRRT 2018	10	20	9	20	2.8%	1.11 [0.58 , 2.14]	
Tang 2016	8	23	15	23	2.9%	0.53 [0.28 , 1.01]	
STARRT-AKI Pilot 2013	13	48	16	52	3.1%	0.88 [0.47 , 1.63]	
Xia 2019	15	30	13	30	3.8%	1.15 [0.67 , 1.99]	_ _ _
ELAIN 2016	34	112	48	119	7.9%	0.75 [0.53 , 1.07]	
FST 2018	36	58	35	60	10.5%	1.06 [0.79 , 1.43]	-
IDEAL-ICU 2014	111	246	102	242	16.9%	1.07 [0.87 , 1.31]	-
AKIKI 2015	129	311	134	308	18.6%	0.95 [0.79 , 1.15]	-
STARRT-AKI 2019	538	1465	523	1462	29.0%	1.03 [0.93 , 1.13]	
Subtotal (95% CI)		2430		2396	100.0%	0.97 [0.87 , 1.09]	
Total events:	922		922				—
Heterogeneity: Tau ² = 0.01	; Chi ² = 15.4	42, df = 11	$(P = 0.16); I^2$	= 29%			
Test for overall effect: Z =	0.53 (P = 0.6	60)					
1.1.2 Death after 30 days							
Yin 2018	12	33	9	30	1.0%	1.21 [0.60 , 2.46]	
STARRT-AKI Pilot 2013	18	48	19	52	1.9%	1.03 [0.62 , 1.71]	
Bouman 2002	31	70	14	36	2.1%	1.14 [0.70, 1.85]	
ELAIN 2016	44	112	65	119	6.2%	0.72 [0.54, 0.95]	-
DEAL-ICU 2014	138	246	128	242	17.5%	1.06 [0.90 , 1.25]	
AKIKI 2015	150	311	153	308	17.8%	0.97 [0.83, 1.14]	1
STARRT-AKI 2019	643	1465	639	1462	53.5%	1.00 [0.93, 1.09]	_
Subtotal (95% CI)		2285		2249	100.0%	0.99 [0.92 , 1.07]	—
Total events:	1036		1027				$\mathbf{\nabla}$
Heterogeneity: Tau ² = 0.00	; $Chi^2 = 6.41$	1, df = 6 (P)	= 0.38); I ² =	6%			
Test for overall effect: Z =	0.22 (P = 0.8	B3)	,,				
		11.10 -	(D 0 7 4)	004			
lest for subgroup difference	es: $Chi^2 = 0$.11, $df = 1$	$(P = 0.74), I^2$	= 0%			0.02 0.1 1 10 50
							Less with early Less with standard

Cochrane Database of Systematic Reviews 2022, Issue 11.

Cochrane Database of Systematic Reviews 2022, Issue 11.

EARLY AND STANDARD INITIATION

Length of stay

- Complication
 - Hypotension
 - Hypophosphatemia
 - Cardiac arrhythmia
 - Infection

Early > standard initiation

Cochrane Database of Systematic Reviews 2022, Issue 11.

MODALITIES OF EXTRACORPOREAL THERAPIES

Modality	Advantages	Disadvantages	Appropriate setting
IHD	Rapid removal of toxins and low molecular weight substances	Rapid fluid removal leading to hypotension	Hemodynamically stable patients with hyperkalemia, metabolic acidosis, or poisoning with a dialyzable toxin
		Dialysis disequilibrium and cerebral edema	
	Allows "down time" for diagnostic and therapeutic procedures	Requires treated water and concentrates	
	Reduced exposure to anticoagulation; hence, lower bleeding risk	Not possible to combine with other organ support systems	
	Lower costs than CRRT		
CRRT	Continuous removal of toxins	Slower clearance of toxins	Hemodynamically unstable patients with pulmonary edema, liver disease, or
	Less hypotension and need for escalation of vasopressors	Need for prolonged anticoagulation	Can be easily and appropriately coupled with other extracorporeal organ support systems
	Easy control of fluid balance because of unlimited fluid removal	Dedicated filter sets and sterile fluid bags required	
	Allows adequate nutrition even in anuric patients	Patient immobilization or frequent interruptions compromising adequate solute and fluid removal	
	User-friendly interactive machines	Increased infection risks	
	Some middle-molecular-weight solute possible	High costs	

Modality	Advantages	Disadvantages	Appropriate setting
SLED	Slower volume and solute removal Hemodynamic stability	Slower clearance of toxins	Hemodynamically unstable Can be coupled with other extracorporeal
	Successfully performed without anticoagulation Allows "down time" for diagnostic and therapeutic procedures		organ support systems
	Same machines may be used for more than one treatment per day, or for acute HD, SLED, or even maintenance HD		
	Lower cost		
PD	Hemodynamic stability	Inadequate clearance in hypercatabolic patients	Hemodynamically unstable with coagulopathy, difficult access, increased risk of cerebral edema in underresourced
	Technically simple	Protein loss	Stand-alone therapy not possible to combine with any other support system
	No anticoagulation	No control of rate of fluid removal	
	No need for vascular access	Risk of peritonitis	
	Lower cost	Hyperglycemia	
	Gradual removal of toxins	Requires intact peritoneal cavity	
		Impairs diaphragmatic movement, potential for respiratory problems	

P

	Conventional IKRT/IHD	Optimized IKRT	PIKRT	CKRT		
Clearance mechanisms	Diffusion	Diffusion	Diffusion or convection	Diffusion +/- convection		
Type of machine	Standard	Standard or CKRT	Standard or CKRT	CKRT		
Blood flow (mL/min)	400–500	200–350	150–350	100–300		
Effluent flow (mL/min)	600–800	400–600	100–200	25–65		
Duration	3–4 h	4–6 h	8–12 h	Continuous		
Frequency	3x/wk	4–5x/wk	4–7x/wk	Daily		
Fluid removal rate	2–5 L/session (0.75–1.5 L/h)	2–5 L/session (0.5–1 L/h)	1–5 L/session (250–500 mL/h)	0–300 mL/h		
Access	AVF, AVG, catheter	AVF, AVG, catheter	Catheter (? AVF/AVG)	Catheter		
Weekly cost	\$	\$—\$\$	\$\$ (lower with auto)	\$\$\$		
Mobilization	Easy	Easy	+/- (easier if performed overnight)	More challenging		
Drug dosing	Straightforward	Straightforward	Limited data	More data		
Staffing	HD RN	HD RN	HD or ICU RN	HD or ICU RN		
Comprehensive clinical nephrology 7 th ed						

IN-HOSPITAL MORTALITY

Study ID RR (95% CI) IHD MEHTA et al. (2001) 1.23 (0.88, 1.71) LINS et al. (2009) 0.96(0.76, 1.20)AUGUSTINE et al. (2004) 0.98 (0.65, 1.47) UEHLINGER et al. (2005) 0.95 (0.63, 1.43) NOBLE et al. (2006) 0.96 (0.71, 1.29) VINSONNEAU et al. (2006) 1.03 (0.83, 1.28) SCHEFOLD et al. (2014) 0.94 (0.73, 1.23) Subtotal (I-squared = 0.0%, p = 0.913) 1.00 (0.90, 1.11) SLED KUMAR et al. (2004) 1.19 (0.69, 2.04) ABE et al. (2010) 1.88 (0.72, 4.89) ABE et al. (2011) 1.59 (0.60, 4.22) SCHWENGER et al. (2012) 1.05 (0.78, 1.40) Subtotal (I-squared = 0.0%, p = 0.600) 1.16 (0.91, 1.47) IRRT LINS et al. (2009) 0.96(0.76, 1.20)Subtotal (I-squared = .%, p = .) 0.96 (0.76, 1.20) Overall (I-squared = 0.0%, p = 0.921) 1.02 (0.93, 1.11) .205 4.89 Seminars in Dialysis. 2020;00:1–6.

IN-ICU MORTALITY

Study ID

RR (95% CI)

Seminars in Dialysis. 2020;00:1–6.

RENAL RECOVERY

Study ID

RR (95% CI)

MODALITIES OF EXTRACORPOREAL THERAPIES

Suggest using CRRT, rather than standard intermittent RRT

- Hemodynamically unstable patients
- AKI patients with acute brain injury
- AKI patients with increased intracranial pressure
- AKI patients with generalized brain edema

HOW TO PRESCRIBE ACUTE INTERNITENT HD

- 2 types
- Non-tunneled, non-cuffed catheter
- Tunneled cuffed catheter

Length

Diameter

Il-14 French

Site	Formula	Accuracy
Right internal jugular	Height/10 cm	90%
Left internal jugular	Height/10 + 4 cm	94%
Right subclavian	Height/10 – 2 cm	96%
Left subclavian	Height/10 + 2 cm	97%

Site

- First choice : right jugular vein
- Second choice : femoral vein
- Third choice : left jugular vein
- Last choice : subclavian vein with preference for the dominant side

KDIGO 2012 Clinical practice guideline for Acute kidney injury

- Non-tunneled, non-cuffed catheter
 - Jugular vein : superior vena cava
 - Femoral vein : distal part of inferior vena cava
- Tunneled, cuffed catheter
 - Junction between superior vena cava and right atrium

non-tunneled, non-cuffed catheter

- < 3 weeks : internal jugular vein, subclavian vein</p>
- < 5 days : femoral vein</p>

Tunneled cuffed catheter

> 3 weeks

Early complication

- Arterial injury
- Pneumothorax
- Hemothorax
- Cardiac tamponade

- Cardiac arrhythmia
- Air embolism
- Retroperitoneal hemorrhage

Recommend using ultrasound guidance for insertion Recommend obtaining a chest radiograph promptly after placement and before first use of an internal jugular or subclavian dialysis catheter

Hollow fiber dialyzers

Membrane Type

- 1. Cellulose
- 2. Substituted cellulose
- 3. Noncellulose, synthetic 4

Biocompatible Infectious complication Renal recovery

Membrane

- Efficiency : K_oA urea
 - Ability to clear solutes
- Flux : $K_{\rm UF}$
 - Ability to remove water
- Permeability : B₂microglobulin clearance
 - Ability to clear B₂microglobulin

	Standard	High Efficiency	High Flux
Blood flow rate (mL/min)	250	≥350	≥350
Dialysate flow rate (mL/min)	500	≥500	≥500
K ₀ A urea	300-500	≥600	Variable
Urea clearance (mL/min)	<200	>210	Variable
Urea clearance/body weight (mL/min/kg)	< 3	>3	Variable
Vitamin B ₁₂ clearance (mL/min)	30–60	Variable	>100
Beta-2 microglobulin clearance (mL/min)	<10	Variable	>20
Ultrafiltration coefficient (mL/hr/mm Hg)	3.5–5.0	Variable	>20
Membrane	Cellulose	Variable	Variable

K_oA

- Maximum theoretical clearance of dialyzer for a given solute at infinite blood and dialysis solution flow rate
 - Membrane porosity and thickness
 - Solute size
 - Flow rate of blood and dialysis solution

Ultrafiltration coefficient ($K_{\rm UF}$)

 Volume of fluid (ml/h) that is transferred across the membrane per mmHg of pressure gradient

Ultrafiltration (ml) = K_{uF} (ml/mmHg/h) x TMP (mmHg) x dialysate time (h)

DIALYZER

Blood volume capacity

- Blood volume required to fill dialyzers 60-120 ml
- Lower volume : minimize the risk of hemodynamic compromise

Surface area

Small surface

Technical and In-vitro Performance Data

renormance Data		Pro 13H		Pro 16H		Pro 19H				
Blood flow (Q _B) mL/min		200	300	400	200	300	400	200	300	400
	Urea	194	263	303	196	270	322	197	280	332
Clearance	Creatinine	185	236	269	189	248	284	194	260	305
Dialysate flow = $500mL/min$	Phosphate	178	220	249	184	230	261	186	242	278
Ultrafiltration flow (Q _F)=0mL/	Vitamin B ₁₂	133	151	167	143	166	183	150	180	202
min	Inulin	86	92	101	96	106	116	102	117	128
	Cytochrome C	65	73	75	72	81	86	80	90	95
SC, (Sieving Coefficient) Q _B = 300mL/min Q _F = 60mL/min	Inulin					1.0		35		
	B ₂ -Microglobulin					0.7				
	Albumin					< 0.001				
Ultrafiltration coefficient mL/h/mmHg QB = 300mL/min			70			85			97	
KoA Urea (Q _B = 300mL/min)		1010		1145		1415				
Volume of blood compartment (mL)		82		100		120				
Membrane material					α	Polysulfone	Pro			
Surface Area (m ²)			1.3			1.6			1.9	
Sterilization					Оху	gen-free Ga	mma			
Recommended blood flow rate (mL/min)			200-500			200-500			200-500	
Max. dialysate flow (mL/min)		800		800		800				
Pressure drop blood ($Q_B = 300 \text{mL/min}$) mmHg		101		82		72				
Article No.			720DH13			720DH16			720DH19	

SESSION LENGTH

- Ist session : 2 h
- 2nd session : 3 h
- 3rd session : 4 h

FLOW RATE

Blood flow rate

• 150-200 ml/min

Dialysis solution flow rate

- 300-500 ml/min

ULTRAFILTRATION

Target intravascular volume

- Non-invasive monitoring : bio-impedance analysis, echocardiography
- Invasive monitoring
- Volume status
 - Volume overload : UF 10 ml/kg/hour
 - Ist session : UF < 2 1</p>

DIALYSIS SOLUTION : NA

Mild hyponatremia

Moderate to severe hyponatremia

Serum Na > 130 mEq/l
 Serum Na < 130 mEq/l
 Cool common No 140 mEq/l
 Diobusic colution No column
 Diobusic column
 Diobusicolumn
 Diobusic

- Brain edema or hypotension : < 10 mEq/l
- Duration < 1 hour alternating with isolated UF
- Check serum Na after each dialysis 30-60 minutes of dialysis

Handbook of dialysis, 5th ed. 2015

DIALYSIS SOLUTION: NA

Mild hypernatremia

- Close to serum Na
- Lower than the serum value 3-5 mEq/l
 - Hypotension
 - Muscle cramps
 - Cerebral edema and disequilibrium syndrome

Severe hypernatremia

• Prefer CRRT

DIALYSIS SOLUTION : NA PROFILE

- **1. Decreasing Na profile**
 - Linear : late dialytic hypotension
 - Stepwise : early dialytic and postdialytic hypotension
 - Exponential
- 2. Increasing Na profile : late muscle cramp
- 3. Alternating high-low Na profile

DIALYSIS SOLUTION : K

Serum K	Dialysate K				
$< 4.5 \mathrm{mEq/L}$	$\geq 4 \text{ mEq/L}$				
4.5 - < 5.5 mEq/L	3 mEq/L				
K rebound within 1-2 hours after dialysis No treat a postdialysis hypokalemia • patients have arrhymia risk • patients on digitalis					
> 7 mEq/L	< 2 mEq/L + monitor ECG + monitor K every 30-60 minutes				

Handbook of dialysis, 5th ed. 2015

DIALYSIS SOLUTION : GLUCOSE

Glucose 100 mg/dl

Severe hyperkalemia

Glucose 200 mg/dl

 Mild to moderate hyperkalemia

Glucose free dialysis solution	n : risk of hypoglycemia
Diabetes	
Sepsis	a sense and s
• Beta-blocker	

DIALYSIS SOLUTION : CA

Hypocalcemia or normocalcemia

- Ca 3-3.5 mEq/l
- Hypercalcemia
 - Ca 2.5-3.5 mEq/l

Dialysis solution Ca < 3 mEq/L : intradialytic hypotension

DIALYSIS SOLUTION : CA

- serum Ca < 8 mg/dL</p>
 - Ca 3-3.5 mEq/L
- serum Ca 8-12 mg/dL
 Ca 2.5 mEq/L
- serum Ca > 12 mg/dL
 Ca 2-2.5 mEq/L

DIALYSIS SOLUTION : HCO₃

- Evaluate acid-base status of patient
- Avoid alkalosis
 - Additional bicarbornate 4-8 mEq/l : citrate-based and acetate based

DIALYSIS SOLUTION : HCO₃

Mild to moderate acidosis

Severe acidosis

30-35 mEq/L

35-40 mEq/L

DIALYSIS SOLUTION : HCO₃

 $HCO_3 > 28 mEq/L$

- 25-30 mEq/L
- plus NaCl

DIALYSIS SOLUTION : TEMPERATURE

 Review:
 Systematic review of the effects of adjusting thermal balance during haemodialysis

 Comparison:
 01 IDH

 Outcome:
 02 IDH rate

Study or sub-category	IDH rate ratio (random) 95% Cl	Weight %	IDH rate ratio (random) 95% Cl	Year	Quality
01 fixed temp reduction					
Cruz 1999	-	18.01	4.87 [4.60, 5.14]	1999	в
Van Der Sande 1999		12.09	2.00 [0.04, 3.96]	1999	в
Dheenan 2001	-	17.66	2.50 [2.03, 2.97]	2001	C
Fine 1996		17.95	2.24 [1.93, 2.55]	1996	С
Subtotal (95% CI)		65.71	2.97 [1.33, 4.61]		
Test for heterogeneity: Chi ² = 17	7.06, df = 3 (P < 0.00001), I ² = 98.3%				
Test for overall effect: Z = 3.54	(P = 0.0004)				
02 BTM					
Maggiore 2002	-	18.14	2.00 [1.86, 2.14]	2002	B
Kaufman 1998		16.15	1.86 [0.88, 2.84]	1998	С
Subtotal (95% CI)		34.29	2.00 [1.86, 2.14]		
Test for heterogeneity: Chi ² = 0.0	$D8, df = 1 (P = 0.78), ^2 = 0\%$				
Test for overall effect: Z = 27.65	5 (P < 0.00001)				
Total (95% Cl)	•	100.00	2.63 [1.45, 3.80]		
Test for heterogeneity: Chi ² = 33 Test for overall effect: Z = 4.37	7.38, df = 5 (P < 0.00001), l² = 98.5% (P < 0.0001)				
-1	0 -5 0 5	10			
Fa	vours standard HD Favours cool to	emp			

Nicholas M, et al. NDT (2006) 21 : 1883–1898

DIALYSIS SOLUTION : TEMPERATURE

- Cool temperature
 - Hypothermia
 - Myocardial function
 - End-organ perfusion
 - Blood clotting
 - Possibly renal recovery

 Use anticoagulation for RRT on assessment of the patient's potential risks and benefits from anticoagulation

 For anticoagulation in intermittent RRT, recommend using either unfractionated or low-molecular-weight heparin, rather than other anticoagulants

KDIGO 2012 Clinical practice guideline for Acute kidney injury

KDIGO 2012 Clinical practice guideline for Acute kidney injury

Anticoagulation for Hemodialysis	Clinical Condition		
No anticoagulation or regional anticoagulation	Actively bleeding Significant risk for bleeding Major thrombostatic defect Major surgery within 7 days Intracranial surgery within 14 days		
	Biopsy of visceral organ within 72 hours Pericarditis		
Low-dose heparin	Major surgery beyond 7 days Biopsy of visceral organ beyond 72 hours		
	Minor surgery 8 hours prior Minor surgery within 72 hours		
Low-dose heparin or no anticoagulation	Major surgery 8 hours prior		

Unfractionated heparin

- Constant-infusion method : 2000–5000 U or 50 U/kg bolus followed by a 1000–1500 U/h until 15 to 60 minutes before the end of dialysis
- Repeated-bolus method : 4000 U bolus followed by 1000-2000 U after 2 h
- Low dose regimen : 500–1000 U bolus followed by 500–750 U/h

Low molecular weight heparin

Enoxaparin 0.7-1 mg/kg single bolus

Test	Baseline value	Routine Desire	heparin d range	Tight heparin Desired range		
		During dialysis	At end of dialysis	During dialysis	At end of dialysis	
Activated partial thromboplastin time	1	2-2.5	1.5-2.0	1.5-2.0	1.5-2.0	
Whole-blood partial thromboplastin time	60-85 sec	120-140	85-105	85-105	85-105	
Activated clotting time	120-150 sec	200-250	170-190	170-190	170-190	
Lee-white clotting time	4-8 min	20-30	9-16	9-16 Handbook of dia	9-16 lysis, 5 th ed. 2015	

Anticoagulation	Advantage	Disadvantage
Unfractionated heparin	 Wide availability Large experience Short half life Antagonist available monitoring with routine test Low costs 	 Narrow therapeutic index-risk of bleeding Unpredictable kinetics- monitoring required HIT Heparin resistance
Low molecular weight heparin	 More predictable kinetics No monitoring required Single predialysis dose Reduced risk of HIT 	 Risk of accumulation in kidney failure Monitoring require non-routine test Incomplete irreversible by protamine More expensive

- Anticoagulation-free dialysis
 - Rinse the circuit before dialysis with heparinized saline
 - Use a less thrombogenic dialyzer
 - Flush the circuit with 100 to 200 mL of 0.9% NaCl q 15-30 min
 - Avoid blood or platelet transfusions through the circuit
 - Maintain a high blood flow rate
 - Limit ultrafiltration as feasible because hemoconcentration

MEDICATION

HEMODIALYSIS

Drug	Conventional	High Permeability	Peritoneal Dialysis
Abacavir	U	No (40)	ND
Abatacept	U	U	U
Abciximab	U	ND	U
Abiraterone	No (NS)	No (NS)	U
Acamprosate	ND	ND	ND
Acarbose	ND	ND	ND
Acebutolol (diacetolol)	Yes (NS)	L	ND
Acenocoumarol	U	U	U
Acetaminophen (paracetamol)	Yes (NS)	L	No
Acetazolamide	U	ND	No
Acetohexamide	U	ND	U

PATIENT MONITORING AND COMPLICATION

- Intradialytic hypotension
- Muscle cramps
- Nausea and vomiting
- Headache
- Chest pain and back pain

- Disequilibrium syndrome
- Dialyzer reaction
- Hemolysis
- Air embolism
- Arrhythmia

PATIENT MONITORING AND COMPLICATION

- Intradialysis hypotension
 - increasing frequency and duration
 - Soidum and UF profiling
 - Cool temperature dialysate
 - higher dialysate Ca
 - vasopressor
 - Bolus NSS or albumin

PATIENT MONITORING AND COMPLICATION

- CRBSI

- Universal precaution
- Site of vascular access
- Duration
- Antibiotics : topical and lock

POSTDIALYSIS EVALUATION

- Weight loss
- Postdialysis blood values
 - 20-30 sec to 2 minutes after dialysis
 - BUN
 - Na
 - Ca
 - I-2 hour after dialysis

- K

DIALYSIS DOSAGE AND FREQUENCY

• Urea reduction < 40%</p>

DIALYSIS DOSAGE AND FREQUENCY

Dosage

- $Kt/V \ge 1.3/session$
- Weekly Kt/V 3.9

- Frequency
- 3 times/week

DISCONTINUATION OF THERAPY

Indication of extracorporeal therapies

- If Urine output > 30 ml/hour
 - CrCl < 12 ml/min
 - CrCl 12-20 mL/min
 - CrCl > 20 ml/min

- : continuation of RRT
- : clinician's judgment
- : discontinuation of RRT

The End