

Lupus Nephritis for PMK Resident

Col. Prof. Bancha Satirapoj, MD
Division of Nephrology
Department of Medicine

Phramongkutklao Hospital and College of Medicine

Organ Involvement in the Course of SLE

* Systemic (fatigue, malaise, fever) 95%		* Kidney	30-50%
* Musculoskeletal	95%	* Gastrointestinal	40%
* Cutaneous	80%	* Thrombosis	15%
* Hematologic	85%	* Ocular	15%
* Neurological	60%	* Vasculitis	5%
* Cardiopulmonary	60%		

Arthritis & Rheumatology

Vol. 71, No. 9, September 2019, pp 1400–1412 DOI 10.1002/art.40930 © 2019, American College of Rheumatology

SPECIAL ARTICLE

2019 European League Against Rheumatism/American College of Rheumatology Classification Criteria for Systemic Lupus Erythematosus

Martin Aringer,¹ Karen Costenbader,² David Daikh,³ Ralph Brinks,⁴ Marta Mosca,⁵ Rosalind Ramsey-Goldman,⁶

Entry criterion

Anti-nuclear antibodies at a titre of ≥1:80* on HEp-2 cells or an equivalent positive test

Additive criteria

Do not count a criterion if an explanation other than systemic lupus erythematosus is more likely

Occurrence of a criterion on at least one occasion is sufficient

At least one clinical criterion is required

Criteria need not occur simultaneously

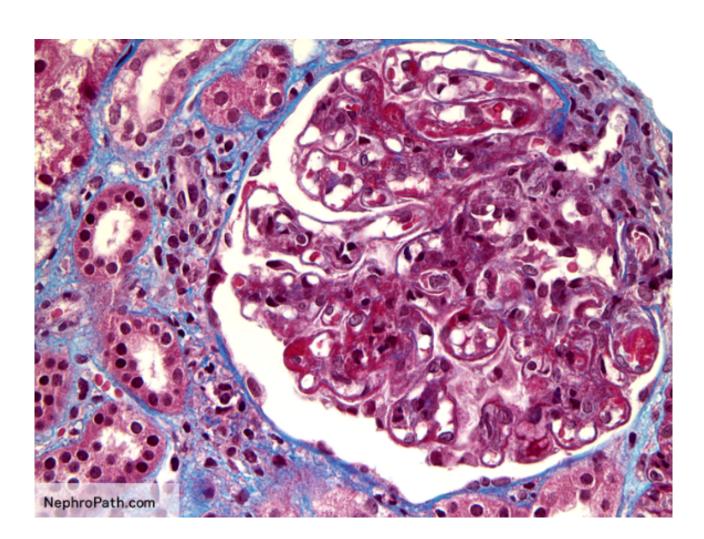
Within each domain, only the highest weighted criterion is counted toward the total score

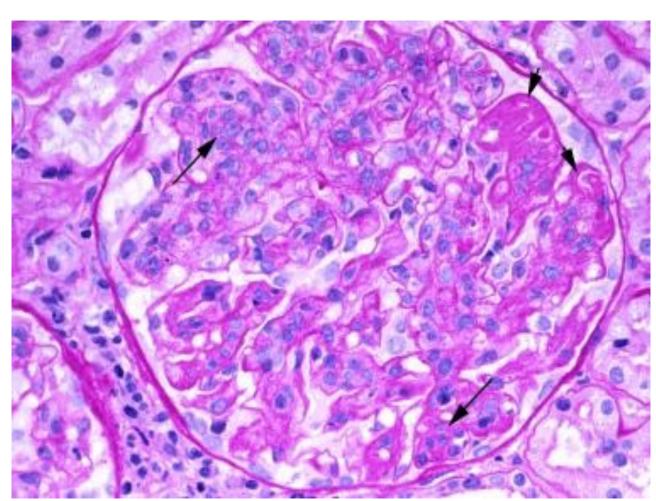
Clinical domains and criteria	Weight
Constitutional Fever	2
Cutaneous Non-scarring alopecia Oral ulcers Subacute cutaneous or discoid lupus Acute cutaneous lupus	2 2 4 6
Arthritis Either synovitis characterised by swelling or effusion in ≥two joints or tenderness in ≥two joints plus ≥30 min of morning stiffness	6
Neurological Delirium Psychosis Seizure	2 3 5
Serositis Pleural or pericardial effusion Acute pericarditis	5 6
Haematological Leucopenia Thrombocytopenia Autoimmune haemolysis	3 4 4
Renal Proteinuria >0.5 g/24 h Renal biopsy class II or V lupus nephritis Renal biopsy class III or IV lupus nephritis	4 8 10

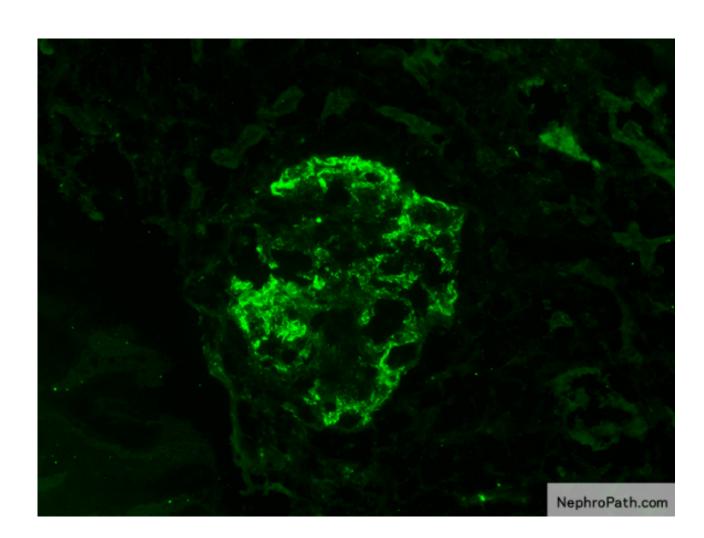
Immunological domains and criteria	Weight
Anti-phospholipid antibodies Anti-cardiolipin antibodies or anti-β2GP1 antibodies or lupus anticoagulant	2
Complement proteins Low C3 or low C4 Low C3 and low C4	3
Highly specific antibodies Anti-dsDNA antibody† Anti-Smith antibody	6

Classify as SLE with a score of 10 or more if entry criterion fulfilled

Aringer M, et al. Arthritis Rheumatol. 2019; 71(9):1400-1412.


New classification criteria compared with the ACR 1997 and SLICC 2012 classification criteria in the derivation and the validation cohorts


	ACR 1997 criteria	SLICC 2012 criteria	EULAR/ACR 2019 criteria
Derivation			
Sensitivity (95% CI)	0.85 (0.81–0.88)	0.97 (0.95-0.98)	0.98 (0.97–0.99)
Specificity (95% CI)	0.95 (0.93-0.97)	0.90 (0.87-0.92)	0.96 (0.95-0.98)
Combined (95% CI)	1.80 (1.76–1.83)	1.87 (1.84–1.90)	1.94 (1.92–1.96)
Validation			
Sensitivity (95% CI)	0.83 (0.80-0.85)	0.97 (0.95-0.98)	0.96 (0.95-0.98)
Specificity (95% CI)	0.93 (0.91–0.95)	0.84 (0.80-0.87)	0.93 (0.91–0.95)
Combined (95% CI)	1.76 (1.73–1.80)	1.80 (1.77–1.84)	1.90 (1.87–1.92)


^{*} ACR = American College of Rheumatology; SLICC = Systemic Lupus International Collaborating Clinics; EULAR = European League Against Rheumatism; 95% CI = 95% confidence interval.

2019 ACR criteria for lupus nephritis

- Proteinuria >0.5 g/24 hours by 24-hour urine or equivalent spot urine proteinto- creatinine ratio
- Class II, III, IV or V lupus nephritis on renal biopsy according to ISN/RPS 2003 classification

Aringer M, et al. Arthritis Rheumatol. 2019; 71(9):1400-1412.

Systemic lupus erythematosus (SLE)

PREDISPOSING FACTORS

GENES

High Hazard Ratios (≥6);

Deficiencies of C1q,C2,C4 (rare) TREX1 mutations affecting DNA degradation (rare)

Affecting Ag presentation or persistence, e.g., phagocytosis of immune complexes

HLA-DRB1 (*1501,*0301), DR3, DQA2 CR2, FCGR2A/B

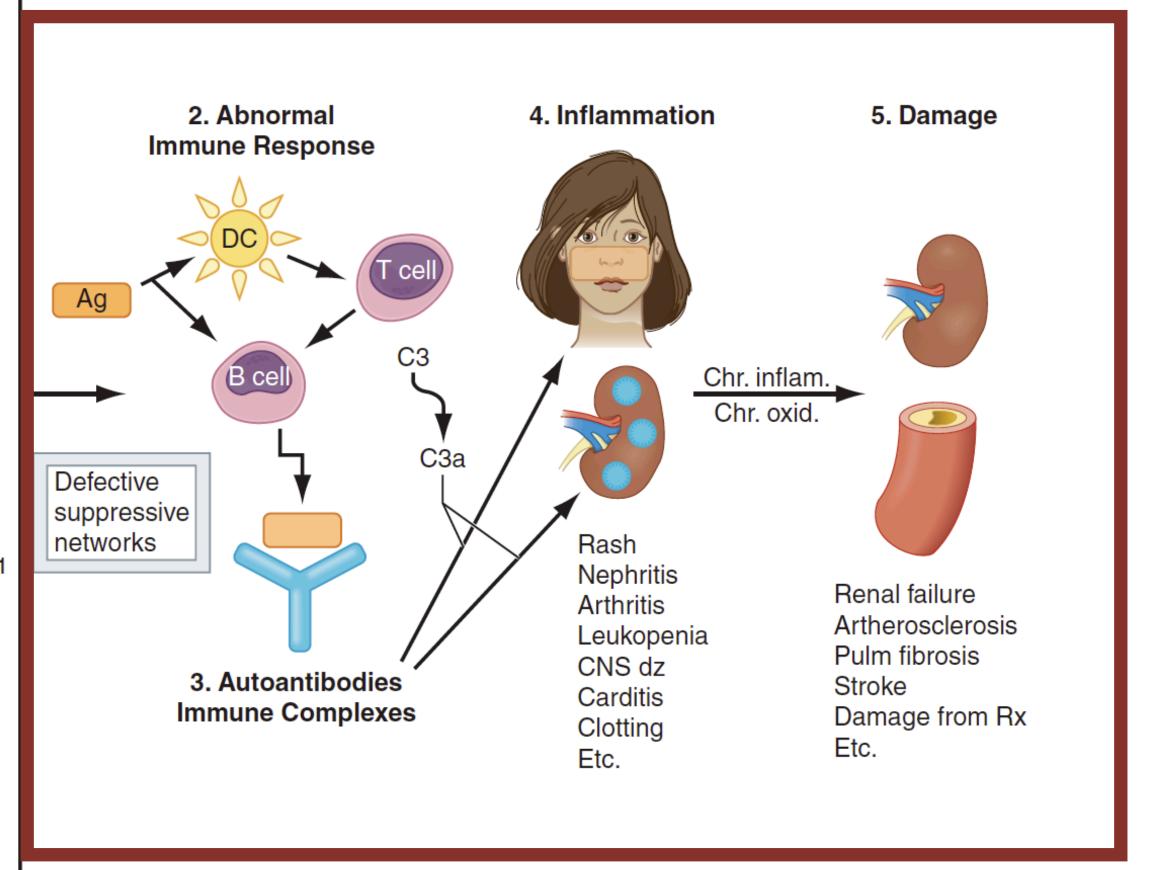
Enhance Innate Immunity, including production of IFNs TNFAIP3, IRF5/TNPO3, IRF7/PHRF1, ITGAM, ICAMs

Alter Adaptive Immunity B and/or T Cell Signaling BANK1, STAT4, MSHS, IZKF3, TCF7

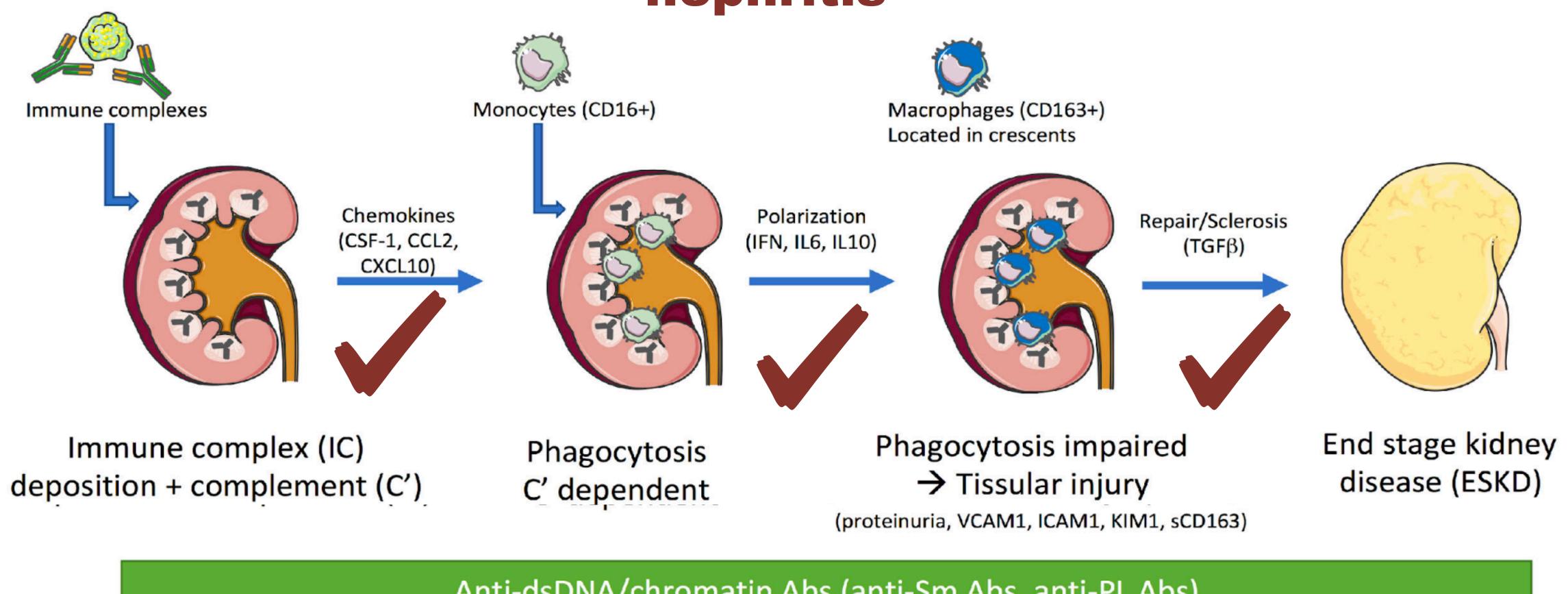
GENES FOR LUPUS NEPHRITIS

HLA-DR3, STAT4, APOL1 (African Americans), FCGR3A, ITGAM, IRF5, IRF7, TNFSF4 (Ox40L), DNAse1

ENVIRONMENT/MICROENVIRONMENT


Ultraviolet Light, Smoking, Crystalline Silica, ?EBV infection Femaleness

EPIGENETICS

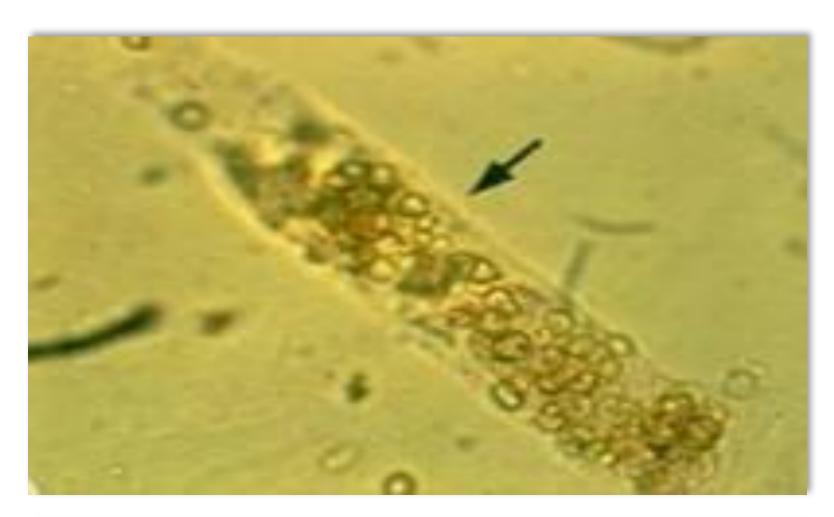

Hypomethylation of DNA: In CD4+T, B and monocytes Some affect IFN production Histone modifications: Some increase expression

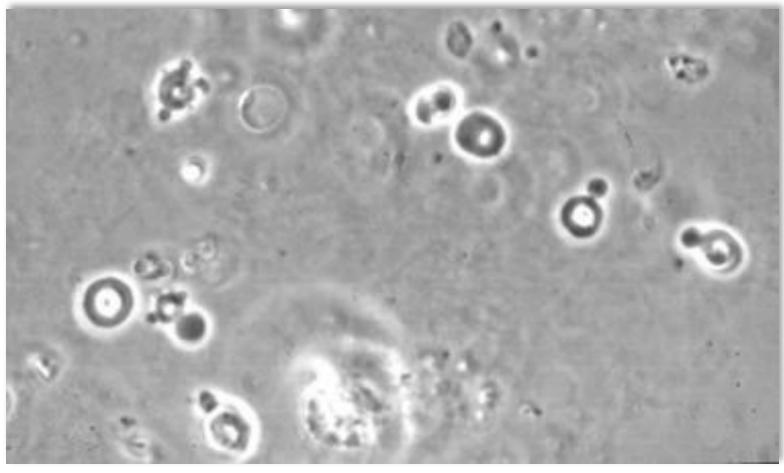
Histone modifications: Some increase expression of predisposing genes and/or IFN production MicroRNA affecting gene expression

Mir-21, -146A, -155, -569, -30A, Let-7a

Pathogenic mechanisms and related biomarkers in lupus nephritis

Anti-dsDNA/chromatin Abs (anti-Sm Abs, anti-PL Abs)


Complement consumption +/- anti-C1q Abs (amplification)


Proteinuria / urinary biomarkers

Renaudineau, Y, et al. Int. J. Mol. Sci. 2023, 24, 14526.

Glomerular syndrome

- Proteinuria (100%)
- Nephrotic syndrome (45-65%)
- Microhematuria (80%)
- * Macrohematuria (1-2%)
- Impaired renal function (40-80%)
- * RPGN (30%)
- * Hypertension (15-50%)

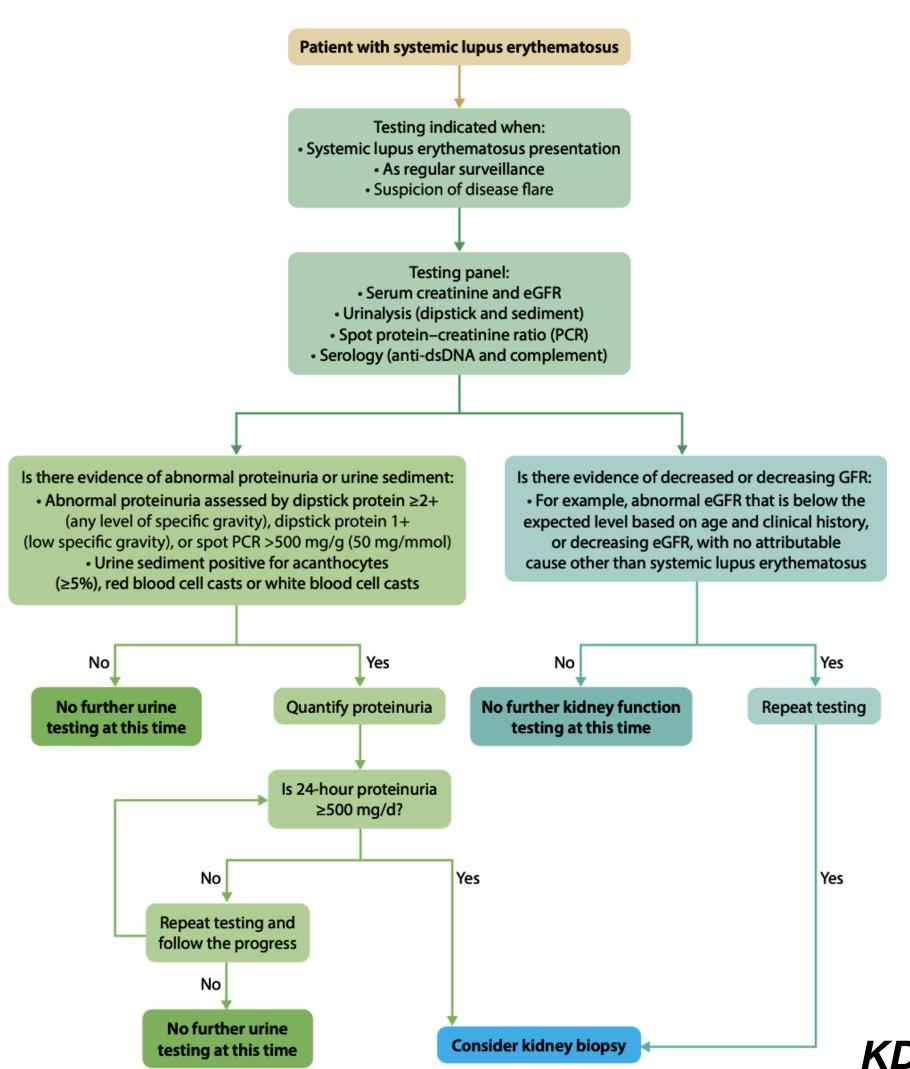
Renal Manifestation

- * Vascular syndrome
 - * Renal vein or artery thrombosis
- * Tubular abnormalities (60-80%)
 - * Renal tubular acidosis (RTA)
 - * Hyperkalemia (15%)

Investigation for active lupus nephritis

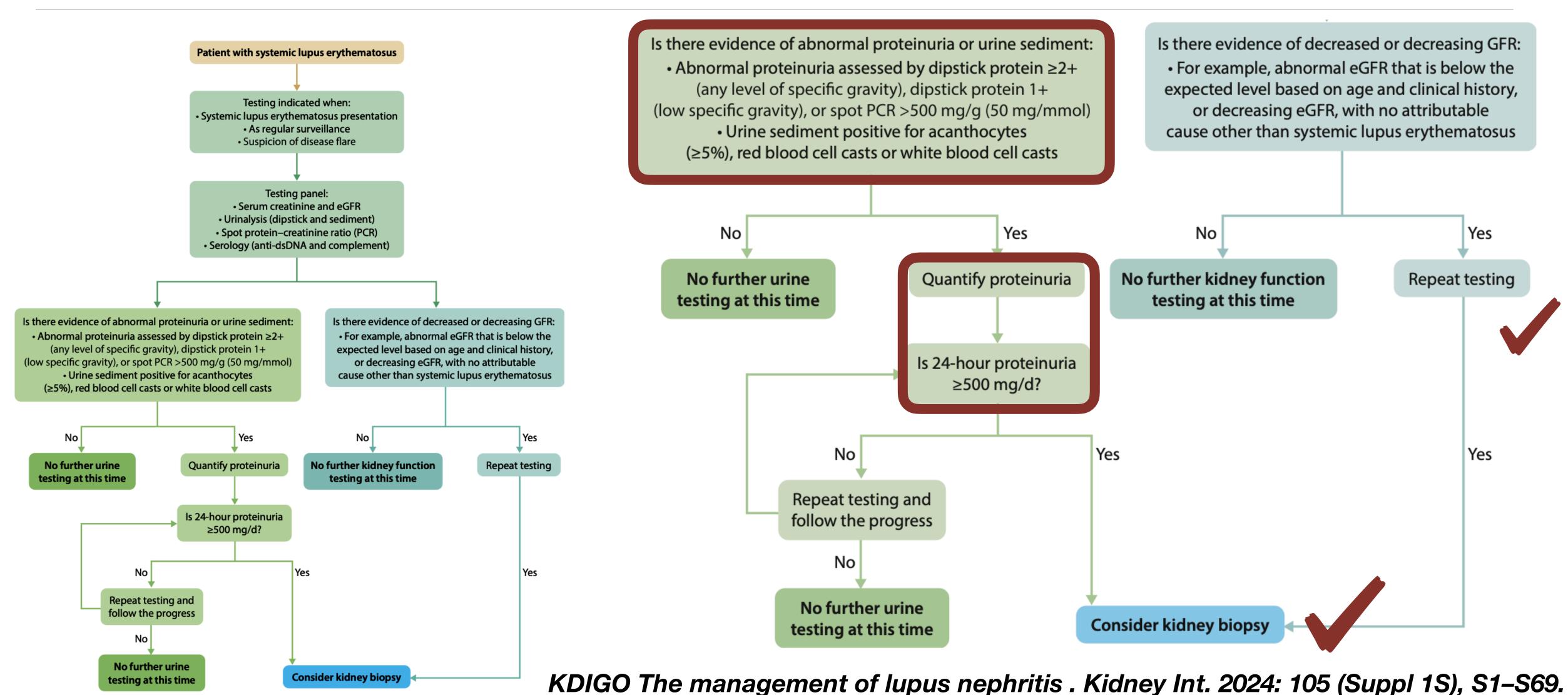
- Systemic symptoms and signs
- * Initial laboratory:
 - * CBC, BUN, serum creatinine
 - Urinalysis: active sediment and proteinuria
 - Serum albumin, cholesterol
- * Complements: CH50, C3, C4
- Anti-ds DNA and anti-C1q antibody titer
- Kidney biopsy

Kidney biopsy

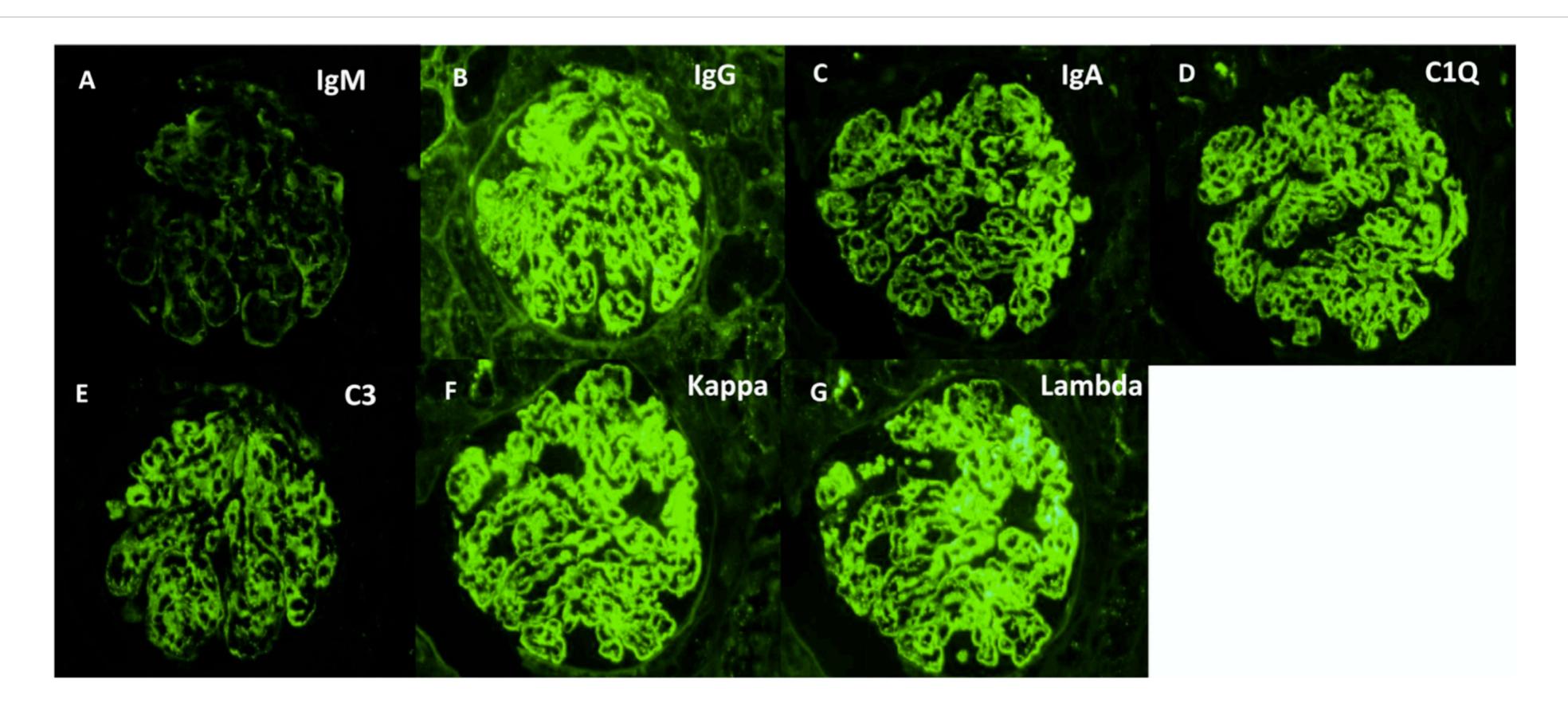

- * First attack
 - * Verify diagnosis
 - * Assessment of activity & severity
 - * Assessment of chronicity
- * Repeat attack
 - * Distinguish active and chronic forms

KDIGO 2024 CLINICAL PRACTICE GUIDELINE FOR THE MANAGEMENT OF LUPUS NEPHRITIS

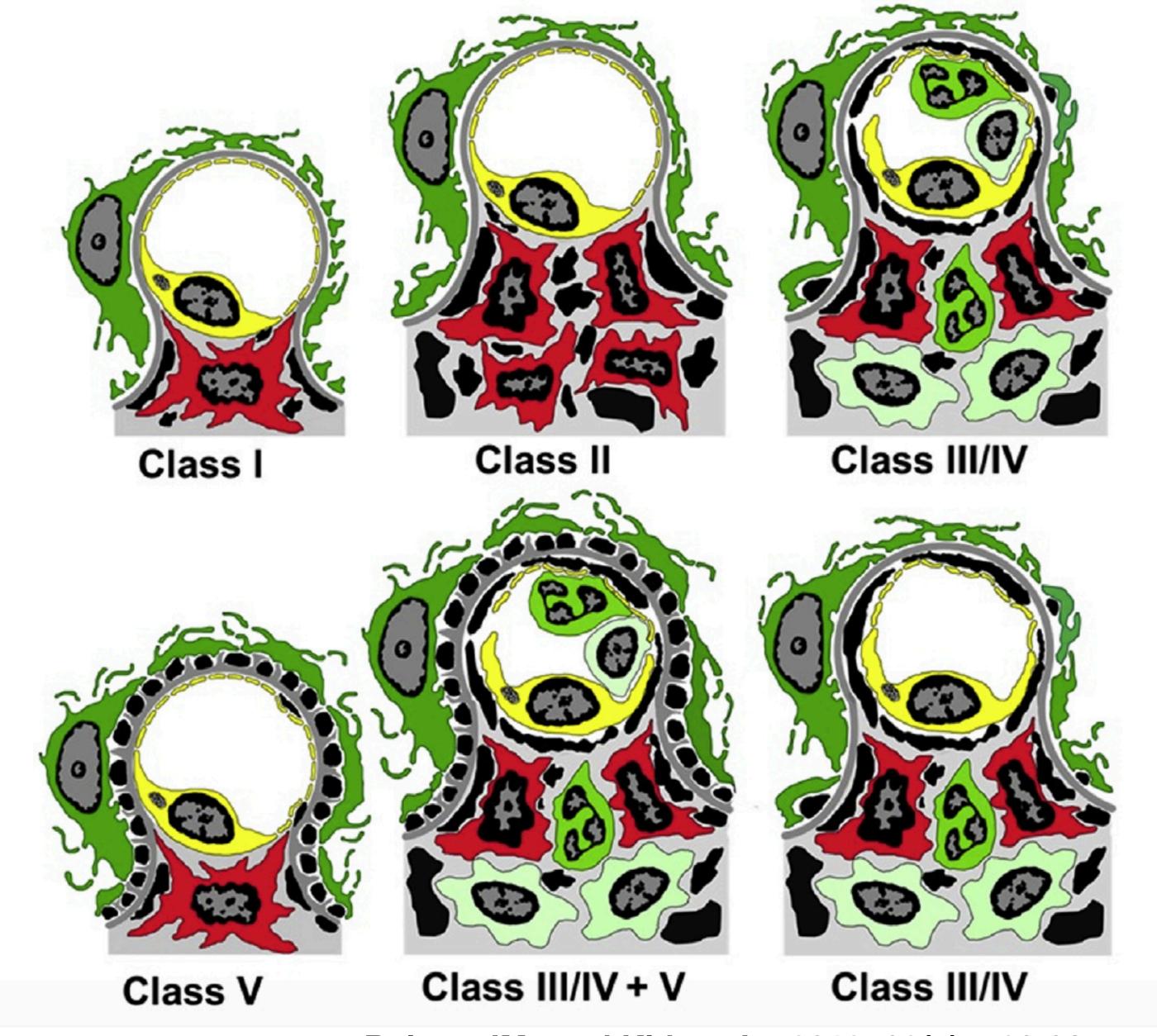
Patient with systemic lupus erythematosus Testing indicated when: Systemic lupus erythematosus presentation As regular surveillance Suspicion of disease flare Testing panel: Serum creatinine and eGFR Urinalysis (dipstick and sediment)


Serology (anti-dsDNA and complement)

Spot protein–creatinine ratio (PCR)


KDIGO The management of lupus nephritis. Kidney Int. 2024: 105 (Suppl 1S), S1-S69.

Diagnosis of kidney involvement in SLE


Immunofluorescence (IF) staining in lupus nephritis

Full house staining

Minimum 10 glomeruli, Diagnosis of LN dominant IgG, C3 and C1q deposits are absolutely required.

Parikh SV, et al. Am J Kidney Dis. 2020; DOI: 10.1053/j.ajkd.2019.10.017

Bajema IM, et al Kidney Int 2018; 93(4): 789-96.

Lupus nephritis biopsy ISN/RPS 2013 Classification

Class I Minimal mesangial lupus nephritis Mesangial proliferative lupus nephritis Class II Focal lupus nephritis^a Class III Diffuse segmental (IV-S) or global (IV-G) lupus nephritis^b Class IV Membranous lupus nephritis^c Class V Advanced sclerosing lupus nephritis Class VI

Indicate and grade (mild, moderate, severe) tubular atrophy, interstitial inflammation and fibrosis, severity of arteriosclerosis or other vascular lesions.

^aIndicate the proportion of glomeruli with active and with sclerotic lesions.

^bIndicate the proportion of glomeruli with fibrinoid necrosis and cellular cres-

cents.

^cClass V may occur in combination with class III of 1 v, III which case both win be diagnosed.

% active/sclerotic glomeruli

Fibrnoid necrosis/cellular crescents

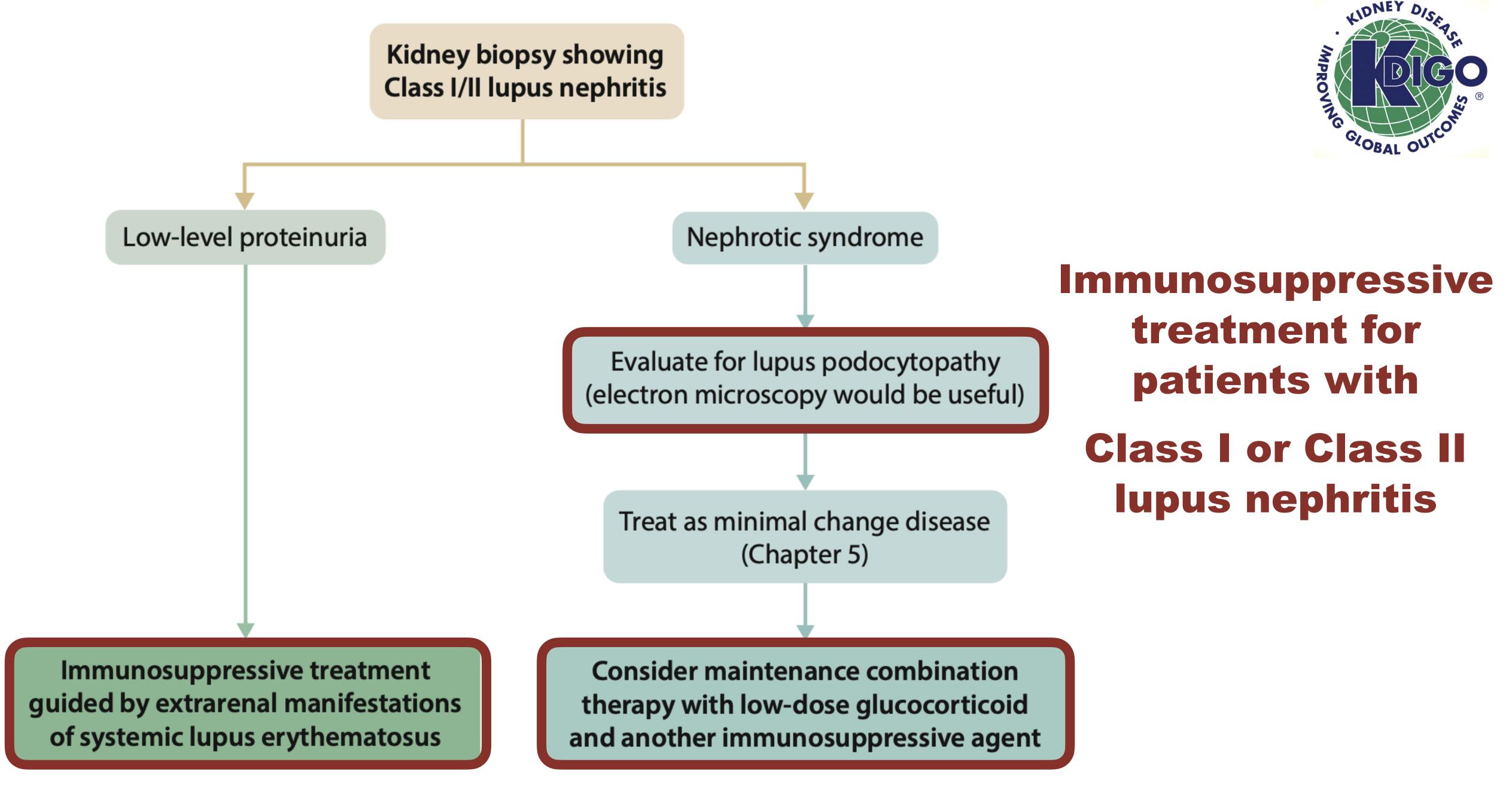
CLINICAL MANIFESTRATION RELATED RENAL PATHOLOGICAL CLASSIFICATION

	Class	Urine sediment active	Proteinuria	Nephrotic syndrome	Renal insuff	5-year renal survival
I		0	0	0	0	100%
II		<25%	25-50%	0	<15%	>90%
III		50%	67%	25-33%	10-25%	70-80%
IV		75 %	>95%	50%	>50%	60-80%
V		30%	>95%	90%	10%	80-90%

General management of patients with lupus nephritis

We recommend that patients with SLE, including those with lupus nephritis (LN), be treated with hydroxychloroquine or an equivalent antimalarial unless contraindicated (1C).

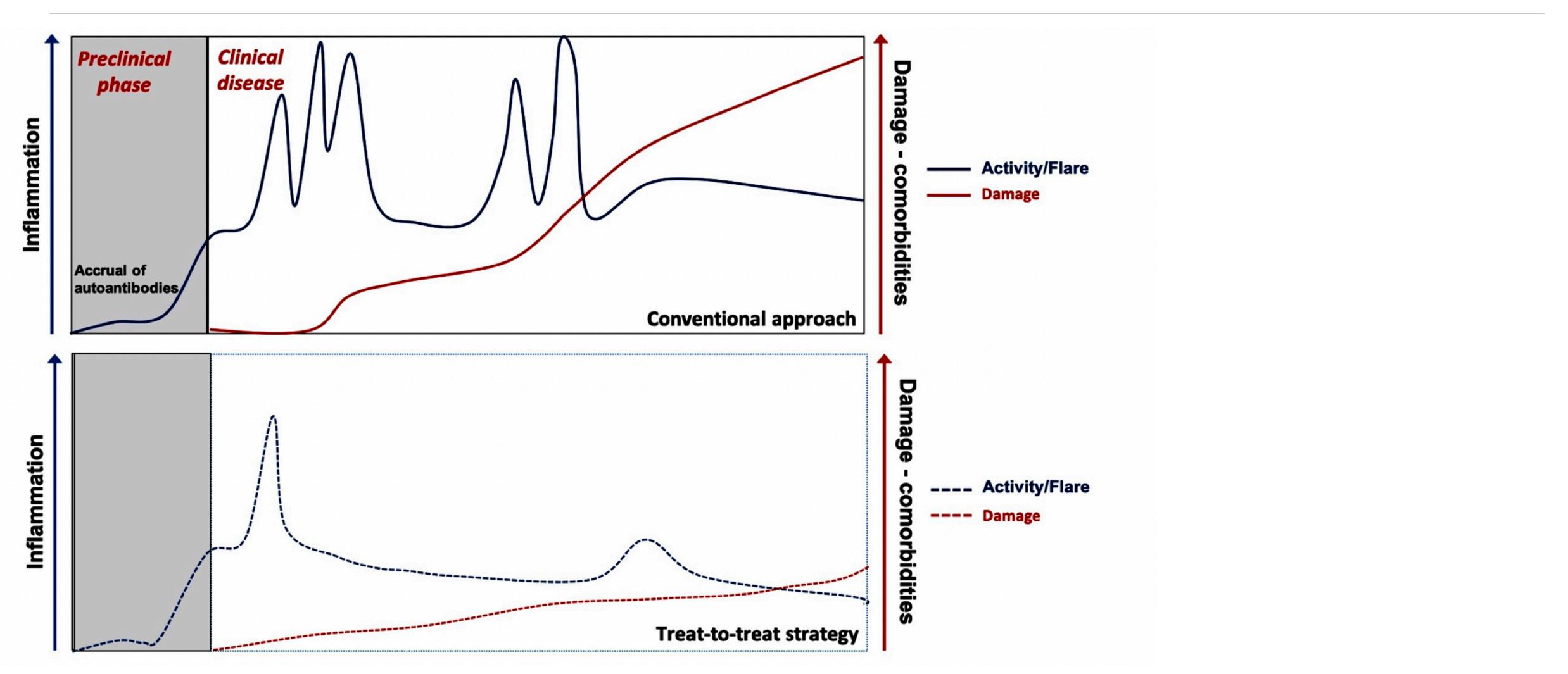
- This recommendation places a relatively higher value on the various benefits associated with hydroxychloroquine use reported in observational studies and on the generally favorable safety profile of hydroxychloroquine treatment
- ♦ The recommended starting dose of hydroxychloroquine is around 5 mg/kg/d (<2.3 mg/kg/d for chloroquine)</p>
- * In patients with eGFR <30 ml/min per 1.73 m², the dose of hydroxychloroquine should be reduced by $\geq 25\%$


1	Cardiovascular risk	 Lifestyle modifications – smoking cessation, body weight optimization, exercise Dyslipidemia management Low-dose aspirin during pregnancy Blood pressure control
2	Proteinuria and CKD progression (refer to Chapter 1)	 Avoid high-sodium diet Optimize blood pressure Renoprotective medications, such as RAAS blockade, SGLT2 inhibitor, etc., in stable patients without AKI Avoid nephrotoxic insult Prevent AKI
3	Infection risk	 Assess medical history of herpes zoster and tuberculosis Screening for HBV, HCV, HIV, and HBV vaccination Pneumocystis jirovecii prophylaxis (issue of potential adverse drug reaction discussed below) Influenza and pneumococcal vaccination Individualized consideration for recombinant zoster vaccine Individualized consideration for other infectious organisms as dictated by public health concerns at the time of treatment

KDIGO The management of lupus nephritis. Kidney Int. 2024: 105 (Suppl 1S), S1-S69.

Measures to minimize the risk of complications related to lupus nephritis or its treatment

4	Bone injury	 Bone mineral density and fracture risk assessment Calcium and vitamin D supplementation Bisphosphonates when appropriate
5	Ultraviolet light exposure	 Broad-spectrum sunscreen Limit ultraviolet light exposure
6	Premature ovarian failure	 Gonadotropin-releasing hormone agonists (i.e. leuprolide) Sperm/oocyte cryopreservation
7	Unplanned pregnancy	 Individual evaluation and counselling for contraception type (preference, thrombosis risk, age)
8	Cancer	 Evaluate individual risk factors for malignancies Age-specific malignancy screening Minimize lifetime cyclophosphamide exposure to <36 g


a) Direct podocyte b) Immune complex injury mechanism mediated mechanism **Podocyte** Vascular space Mesangial **Endothelial** cell Bowman capsule Podocyte foot process effacement

Lupus podocytopathy

Foot process effacement explained by a direct injury associated with T cell dysfunction, cytokines, or lymphokines that damage the podocyte.

Oliva-Damaso N, et al. Adv Chronic Kidney Dis. 2019; 26(5):369-375.

Natural history of SLE and the potential impact of a treatto-target strategy

Fanouriakis A, et al. Ann Rheum Dis. 2021; 80(1):14-25.

Treatment of Proliferative Lupus Nephritis (Class III-IV)

- * Induction phase
 - * Renal remission at presentation and during follow up

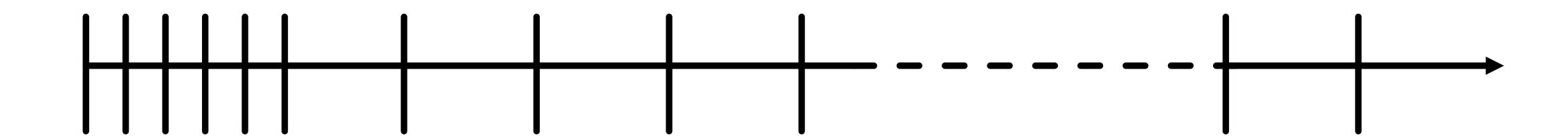
- * Maintenance phase
 - Prevent relapse and minimizing the side effects of treatment

Oral corticosteroids for induction

- * Need for high doses (1.5-2.0 MKD of prednisolone)
- * Little efficacy in severe case
- * Frequent relapses of activity
- * High toxicity

NIH study

Therapy	Pts	10 yrs Renal survival
Prednisolone	30	40%
Azathioprine	20	72%
Cyclophosphamide	18	80%
AZA+CYC	23	88%
IV CYC	20	91%

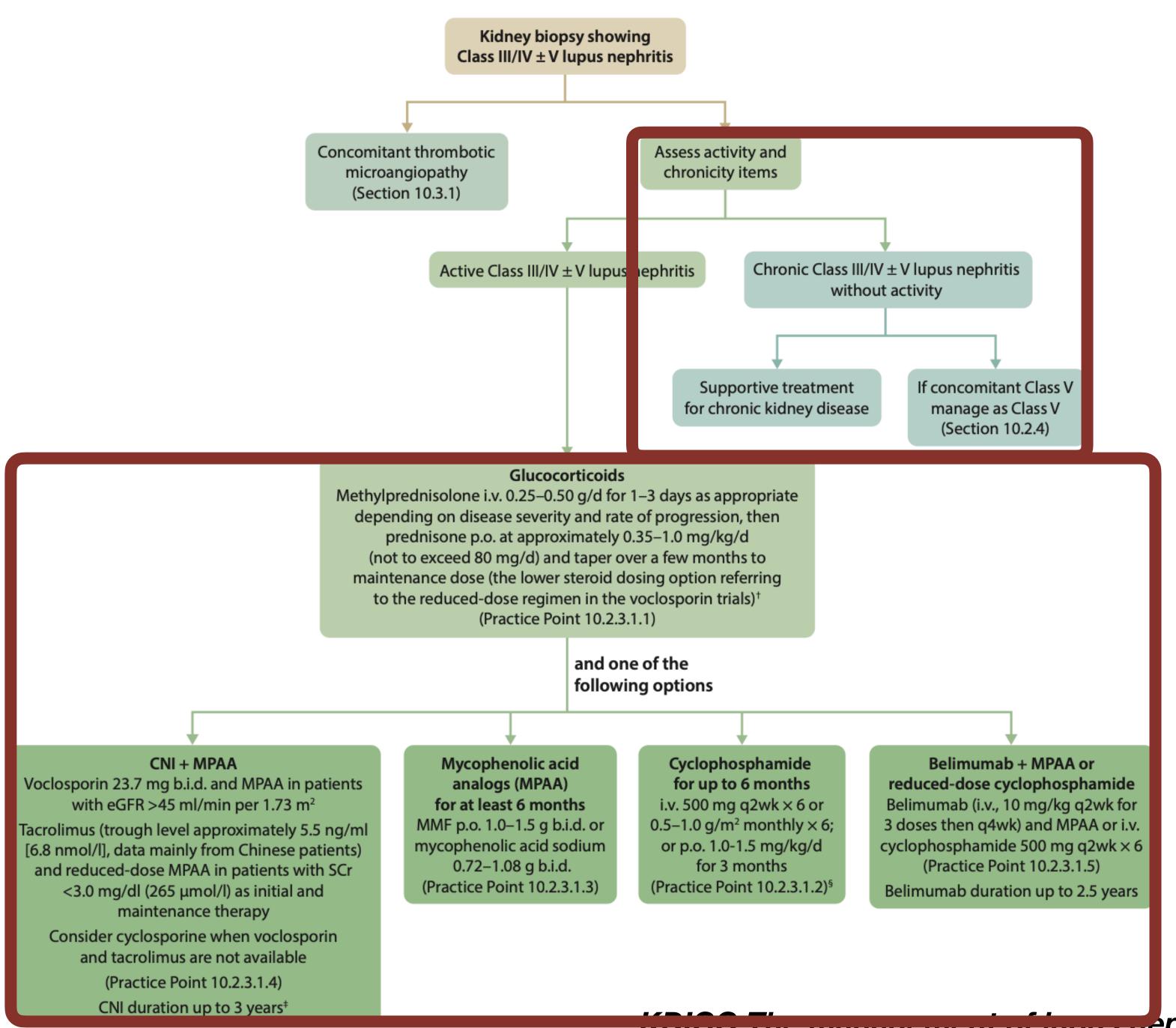

Prednisolone vs IV CYC p = 0.014

Austin H, et al. NEJM 1984; 314: 614

Regimens for initial therapy in class III/class IV LN

Regimen	A. NIH	B. Euro-Lupus	C. Oral cyclophosphamide	D. MMF
Cyclophosphamide	i.v. cyclophosphamide 0.5–1 g/m2; monthly for 6 months	i.v. cyclophosphamide 500 mg; every 2 weeks for 3 months	Oral cyclophosphamide 1.0–1.5 mg/kg/d (maximum dose 150 mg/d) for 2–4 months	
MMF				MMF up to 3 g/d for 6 months
Benefit shown by RCT in proliferative LN	Yes	Yes	Yes	Yes
Benefit shown by RCT in severe proliferative LN	Yes	Untested	Untested	Untested
Comments	Effective in whites, blacks, Hispanics, Chinese	Effective in whites. Untested in blacks, Hispanics, Chinese	Effective in whites, blacks, Chinese; easy to administer and lower cost than i.v. cyclophosphamide	Effective in whites, blacks, Hispanics, Chinese; high cost

IV Pulse Cyclophosphamide: NIH regimen


Induction IVCY q 1 mo x 6

Maintenance IVCY q 3 mo x 6

- Initial IVCY 0.5-1.0 g/m² (0.5 g/m² if GFR 1/3 normal)
- Adjust subsequent IVCY to maximum dose of 1 g/m² unless WBC nadir at 10-14 days after ICVY falls below 1,500/mm³
- Prednisolone 0.5-1 mg/kg/day for 4-8 weeks, which is subsequently tapered to low dose maintenance therapy

Cochrane Renal Group: 50 RCTs involving 2846 participants

- MMF was as effective as IVCY in complete remission of proteinuria (RR 1.16, 95% CI 0.85 to 1.58)
 - No differences in mortality (RR 1.02, 95% CI 0.52 to 1.98)
 - No differences in major infection (RR 1.11, 95% CI 0.74 to 1.68) were observed.
- MMF: A significant reduction
 - Ovarian failure (RR 0.15, 95% CI 0.03 to 0.80)
 - Alopecia (RR 0.22, 95% CI 0.06 to 0.86)

Recommended approach for initial therapy of active Class III/IV lupus nephritis

KDIGS The management of lapas nephritis . Kidney Int. 2024: 105 (Suppl 1S), S1–S69.

Glucocorticoids

Methylprednisolone i.v. 0.25–0.50 g/d for 1–3 days as appropriate depending on disease severity and rate of progression, then prednisone p.o. at approximately 0.35–1.0 mg/kg/d (not to exceed 80 mg/d) and taper over a few months to maintenance dose (the lower steroid dosing option referring to the reduced-dose regimen in the voclosporin trials)† (Practice Point 10.2.3.1.1)

and one of the following options

CNI + MPAA

Voclosporin 23.7 mg b.i.d. and MPAA in patients with eGFR >45 ml/min per 1.73 m²

Tacrolimus (trough level approximately 5.5 ng/ml [6.8 nmol/l], data mainly from Chinese patients) and reduced-dose MPAA in patients with SCr <3.0 mg/dl (265 μmol/l) as initial and maintenance therapy

Consider cyclosporine when voclosporin and tacrolimus are not available

(Practice Point 10.2.3.1.4)

(Practice Point 10.2.3.1.4)

CNI duration up to 3 years[‡]

Mycophenolic acid analogs (MPAA) for at least 6 months

MMF p.o. 1.0–1.5 g b.i.d. or mycophenolic acid sodium 0.72–1.08 g b.i.d. (Practice Point 10.2.3.1.3)

Cyclophosphamide for up to 6 months

i.v. 500 mg q2wk × 6 or
 0.5–1.0 g/m² monthly × 6;
 or p.o. 1.0-1.5 mg/kg/d
 for 3 months
 (Practice Point 10.2.3.1.2)[§]

Belimumab + MPAA or reduced-dose cyclophosphamide

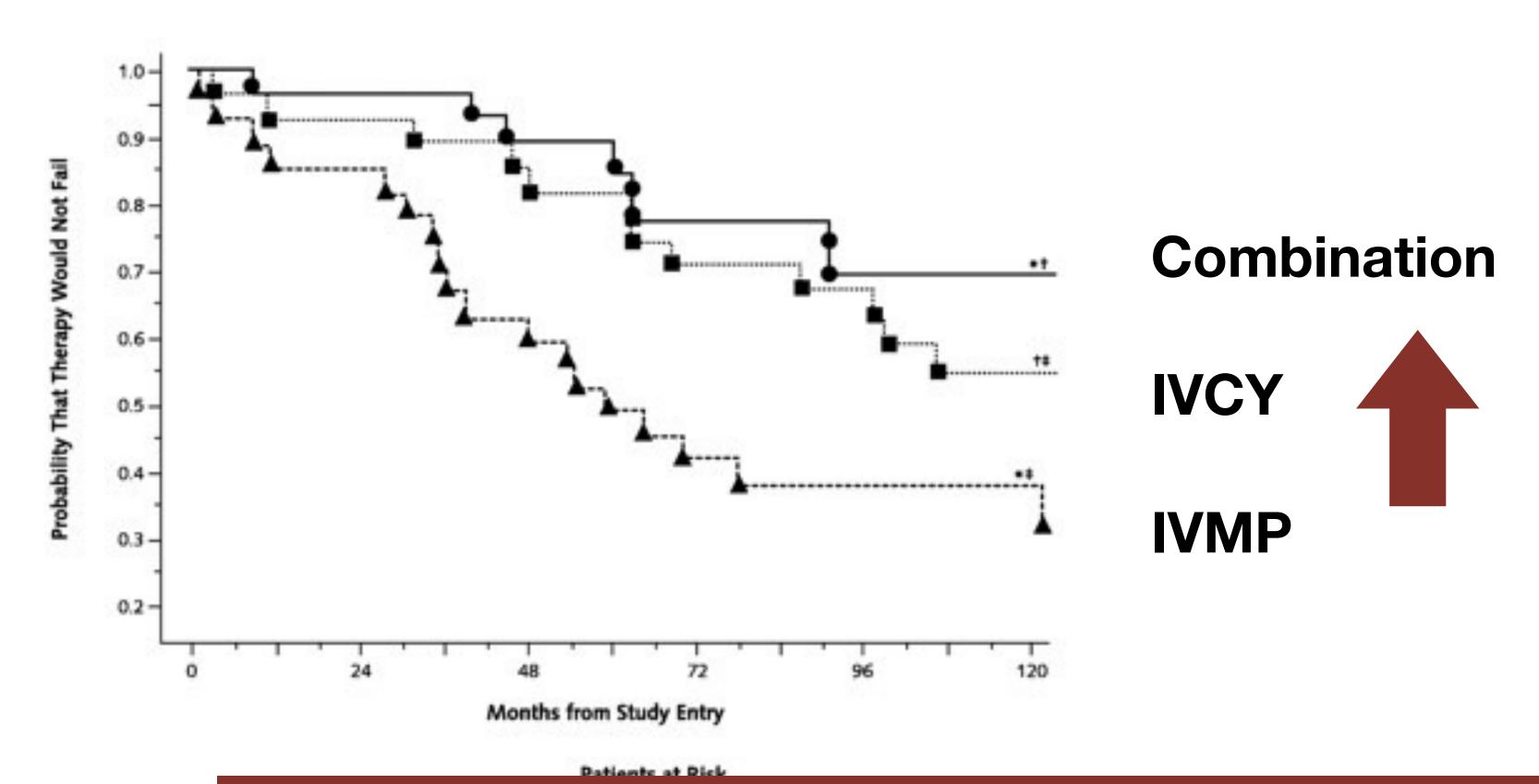
Belimumab (i.v., 10 mg/kg q2wk for 3 doses then q4wk) and MPAA or i.v. cyclophosphamide 500 mg q2wk × 6 (Practice Point 10.2.3.1.5)

Belimumab duration up to 2.5 years

KDIGO The management of lupus nephritis . Kidney Int. 2024: 105 (Suppl 1S), S1-S69.

	High-dose intravenous cyclophosphamide (NIH regimen)	Low-dose intravenous cyclophosphamide (Euro-Lupus regimen)	Oral cyclophosphamide
Cyclophosphamide	i.v. 0.5–1 g/m ² monthly for 6 months	i.v. 500 mg every 2 weeks for 3 months	p.o. 1.0–1.5 mg/kg/d (max 150 mg/d) for 2–6 months
Comments	Efficacy data included patients of different races/ ethnicities	Efficacy data mainly in Caucasian patients, with some data from patients of African or Caribbean descent, Hispanic descent, Indian patients, and other Asian countries	Efficacy data included patients of different races/ethnicities

KDIGO The management of lupus nephritis . Kidney Int. 2024: 105 (Suppl 1S), S1–S69.



Treatment of Active Lupus Nephritis (Class III-IV)

Practice Point

- IV cyclophosphamide should be used as the initial therapy for active Class III and Class IV LN in patients who may have difficulty adhering to an oral regimen
 - Total lifetime exposure
 - The risk of future hematologic malignancy is related to total lifetime exposure (>36 g), as is myelofibrosis (>80 g)
 - * Total lifetime exposure plus age constitutes a significant risk factor for premature ovarian failure (>7.5–15 g/m² for young to older pediatric patients, respectively; 300 mg/kg for adults)
- * EULAR: In patients at high-risk for renal failure (defined as reduced GFR, histological presence of cellular crescents or fibrinoid necrosis, or severe interstitial inflammation), high-dose IV cyclophosphamide in combination with pulse IV methylprednisolone, can be considered.

Controlled Trial in Lupus Nephritis: IVCY vs IVMP vs Combination

Treatment

Cyclophosphamide

Cyclophosphamide pl

methylprednisolone

Methylprednisolone

'Adding pulse methylprednisolone during the initial phase may be advantage for pt with severe proliferative LN "

Cochrane Database of Systematic Reviews

Immunosuppressive treatment for proliferative lupus nephritis (Review)

Tunnicliffe DJ, Palmer SC, Henderson L, Masson P, Craig JC, Tong A, Singh-Grewal D, Flanc RS, Roberts MA, Webster AC, Strippoli GFM

- * 67 studies (4791 participants; median 12 months duration)
- Induction Rx: MMF vs IV cyclophosphamide

Induction Rx: MMF vs IVCY

- No differences in complete remission
- No differences in ESRD
- No differences in major infection

- MMF: Significant reduction in alopecia
- MMF: Significant increase in diarrhea

- [RR 1.17 (95% CI 0.97 to 1.42)]
- [RR 0.,74 (95% CI 0.27 to 1.84)]
- [RR 1.02 (95% CI 0.67 to 1.54)]

- [RR 0.29. (95%CI 0.19. to 0.46)]
- [RR 2.42. (95%CI 1.64. to 3.58)]

Treatment of Active Lupus Nephritis (Class III-IV)

Practice Point

- An MPAA-based regimen is the preferred initial therapy of proliferative LN for patients at high risk of infertility, such as patients who have a moderate-to-high prior cyclophosphamide exposure
 - MPA pharmacokinetics varies considerably among patients, especially in the context of hypoalbuminemia and impaired kidney function.
 - MPA area under the concentration-versus-time curve of 35–45 mg h/l or a trough level of 3.0–4.5 mg/l may serve to ensure adequate exposure during initial therapy

Glucocorticoids dosing regimens

	High-dose scheme	Moderate-dose scheme	Reduced-dose scheme
Methylprednisolone intravenous pulses	Nil or 0.25–0.5 g/day up to 3 days as initial treatment	0.25–0.5 g/day up to 3 days often included as initial treatment	0.25–0.5 g/day up to 3 days usually included as initial treatment
Oral prednisone equivalent (/day)			
Week 0-2	0.8-1.0 mg/kg (max 80 mg)	0.6-0.7 mg/kg (max 50 mg)	0.5-0.6 mg/kg (max 40 mg)
Week 3-4	0.6–0.7 mg/kg	0.5-0.6 mg/kg	0.3-0.4 mg/kg
Week 5-6	30 mg	20 mg	15 mg
Week 7–8	25 mg	15 mg	10 mg
Week 9–10	20 mg	12.5 mg	7.5 mg
Week 11-12	15 mg	10 mg	5 mg
Week 13-14	12.5 mg	7.5 mg	2.5 mg
Week 15-16	10 mg	7.5 mg	2.5 mg
Week 17-18	7.5 mg	5 mg	2.5 mg
Week 19-20	7.5 mg	5 mg	2.5 mg
Week 21-24	5 mg	<5 mg	2.5 mg
Week >25	<5 mg	<5 mg	<2.5 mg

KDIGO The management of lupus nephritis . Kidney Int. 2024: 105 (Suppl 1S), S1–S69.

Criteria	Definition
Complete response*	 Reduction in proteinuria <0.5 g/g (50 mg/mmol) measured as the PCR from a 24-h urine collection Stabilization or improvement in kidney function (±10%–15% of baseline) Within 6–12 mo of starting therapy, but could take more than 12 mo
Primary efficacy renal response	 PCR ≤0.7 g/g (70 mg/mmol) eGFR that was no worse than 20% below the pre-flare value or ≥60 ml/min per 1.73 m² No use of rescue therapy for treatment failure
Partial response	 Reduction in proteinuria by at least 50% and to <3 g/g (300 mg/mmol) measured as the PCR from a 24-h urine collection Stabilization or improvement in kidney function (±10%–15% of baseline) Within 6–12 mo of starting therapy
No kidney response	• Failure to achieve a partial or complete response within 6–12 mo of starting therapy

KDIGO The management of lupus nephritis . Kidney Int. 2024: 105 (Suppl 1S), S1–S69.

The NEW ENGLAND JOURNAL of MEDICINE

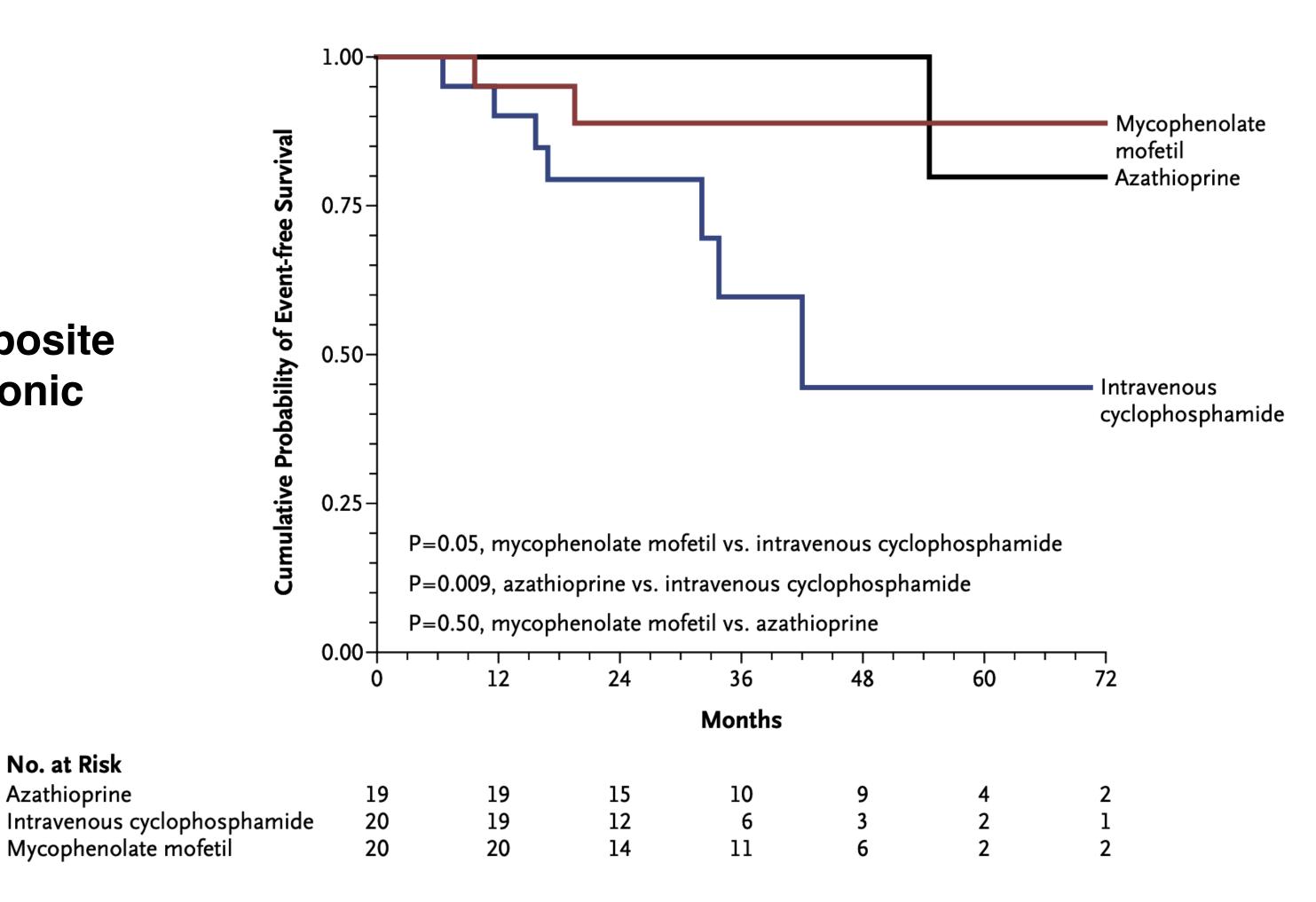
ESTABLISHED IN 1812

MARCH 4, 2004

VOL. 350 NO. 10

Sequential Therapies for Proliferative Lupus Nephritis

Gabriel Contreras, M.D., M.P.H., Victoriano Pardo, M.D., Baudouin Leclercq, M.D., Oliver Lenz, M.D., Elaine Tozman, M.D., Patricia O'Nan, R.N., and David Roth, M.D.


Contreras G. et al. NEJM 2004; 350: 971-980.

Maintenance therapy with MMF/AZA/IVCY

The 72-month event-free survival rate for the composite end point of death or chronic renal failure

No. at Risk

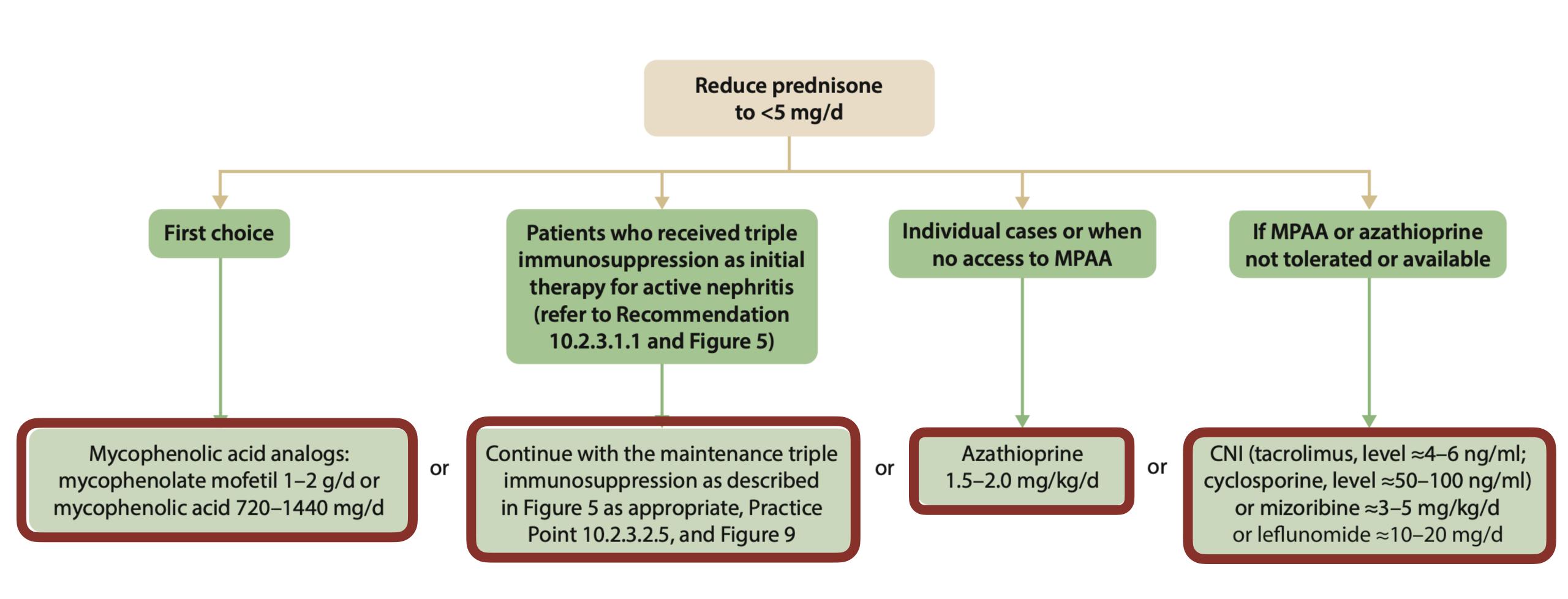
Azathioprine

Cochrane Database of Systematic Reviews

Immunosuppressive treatment for proliferative lupus nephritis (Review)

Tunnicliffe DJ, Palmer SC, Henderson L, Masson P, Craig JC, Tong A, Singh-Grewal D, Flanc RS, Roberts MA, Webster AC, Strippoli GFM

- Maintenance therapy
- Nine studies (767 participants; median 30 months duration (range 6 to 63 months)


Maintenance therapy: AZA vs MMF

- * No differences in death [RR 1.15(95%CI 0.34 to 3.87)]
- * No differences in ESRD [RR 1.70 (95% CI 0.52 to 5.54)]
- No differences in major infection [RR 1.08 (95% CI 0.69 to 1.96)]

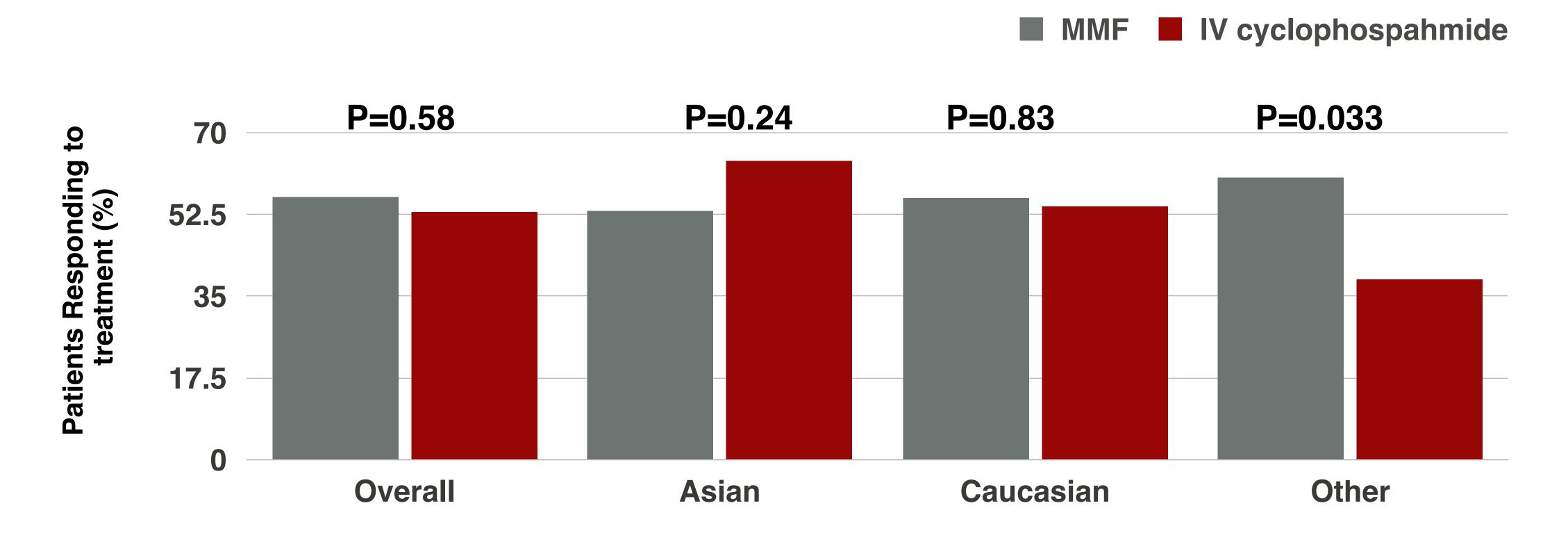
- * AZA: Significant increase in relapse [RR 1.75 (95%Cl 1.20 to 2.55)]
- * AZA: Significant increase in leukopenia [RR 5.61 (95%Cl 1.68. to 18.72)]

Recommended maintenance therapy for Class III and Class IV lupus nephritis

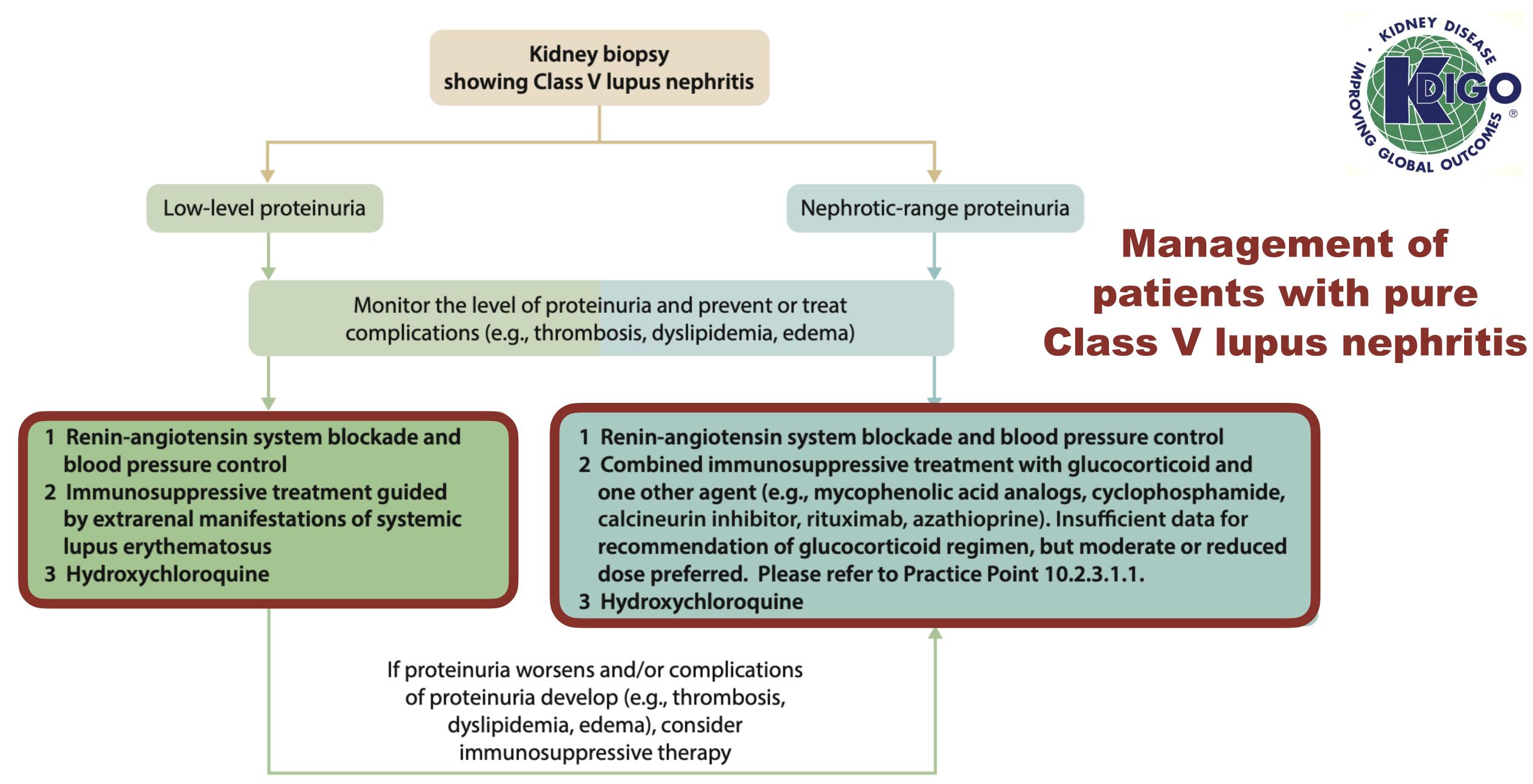
Recommended maintenance therapy for Class III and Class IV lupus nephritis

Maintenance	Low-dose glucocorticoids AND					
immuno- suppressive regimens	Mycophenolic acid analogs	Azathioprine	Belimumab and mycophenolic acid analogs or azathioprine	CNI and mycophenolic acid analogs	CNI (such as voclosporin, tacrolimus or cyclosporine)	Mizoribine
Comments	Preferred treatment based on high- certainty evidence; lower flare rate than azathioprine maintenance	Low medication cost; safe in pregnancy	Efficacy and safety of belimumab demonstrated in BLISS-LN (104-wk) and open-label extension trials (28-wk) [Practice Point 10.2.3.2.5]	Efficacy and safety of voclosporin demonstrated in AURORA 1 (52-wk) and AURORA 2 continuation trials (2-yr); efficacy and safety of tacrolimus demonstrated in 'Multitarget Therapy' trial in Chinese patients in which tacrolimus and reduced-dose MPAA were given for 24 months [Practice Point 10.2.3.2.5]	Tacrolimus and cyclosporine safe in pregnancy; insufficient pregnancy data on voclosporin	Experience mostly in Japanese patients

KDIGO The management of lupus nephritis . Kidney Int. 2024: 105 (Suppl 1S), S1-S69.


Maintenance therapy for Class III and Class IV lupus nephritis

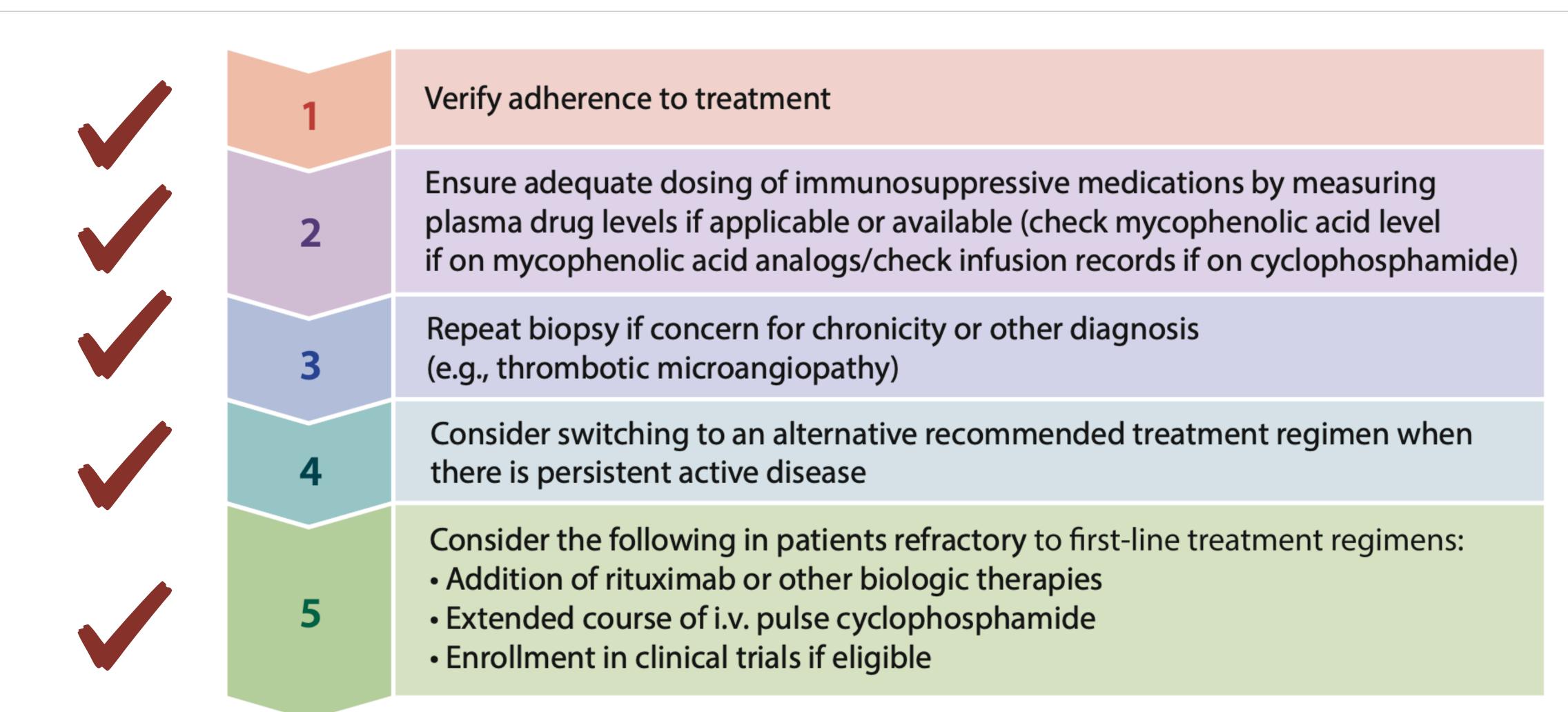
Practical point


- Glucocorticoids should be tapered to the lowest possible dose during maintenance, except when glucocorticoids are required for extrarenal lupus manifestations
- Discontinuation of glucocorticoids can be considered after patients have maintained a complete clinical renal response for ≥12 months.
- ♦ The total duration of initial immunosuppression plus combination maintenance immunosuppression for proliferative LN should be ≥36 months.

Post-hoc analyses of ASPREVA study

MMF with cyclophosphamide in 60 with pure membranous LN Response rates were similar between patients with renal biopsy class V

Appel GB; et al. J Am Soc Nephrol. 2009;20(5):1103-12



Resistant lupus nephritis

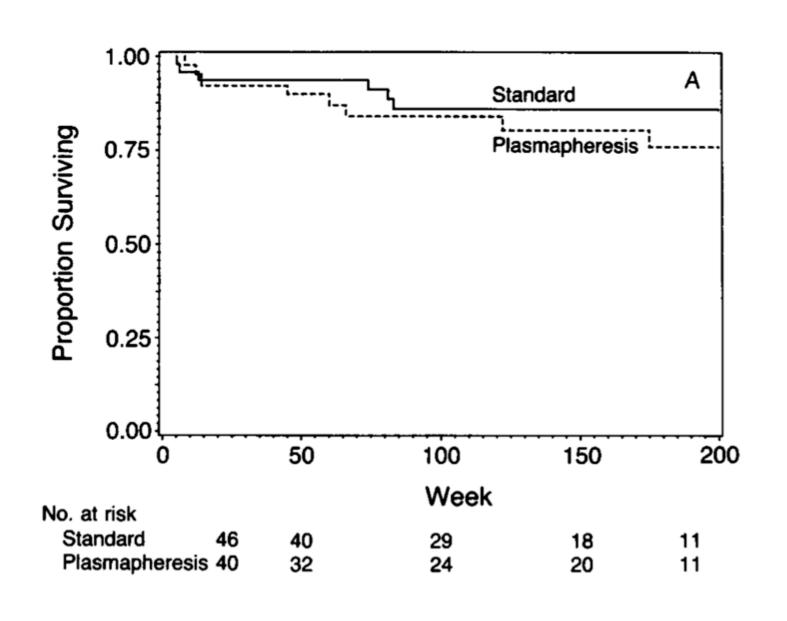
- Steroid and cyclophosphamide/MMF appear to be the most effective
- * Up to 15%: refractory to standard treatment
- * 30%-50% still develop ESRD
- * Infection and gonadal toxicity

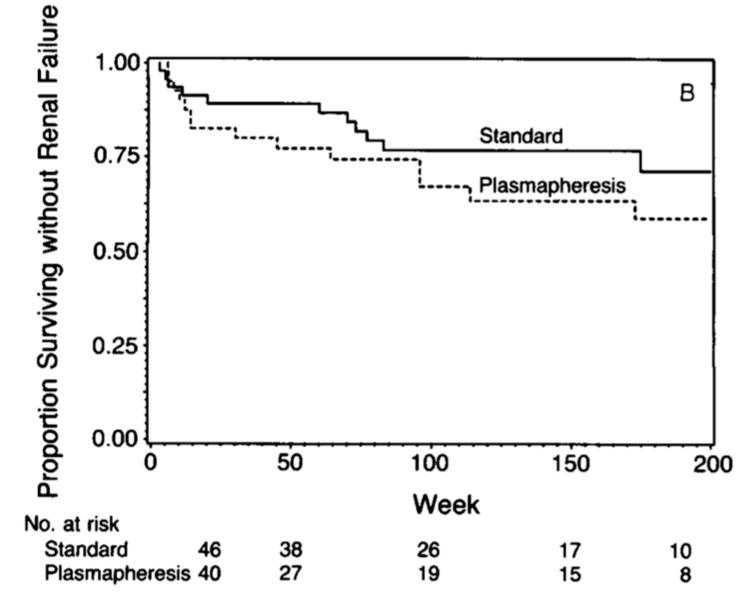
Management of unsatisfactory response to treatment

Emerging treatment regimens for proliferative LN

LN Induction: Emerging Therapies			
Rituximab	IV rituximab	1,000 mg on d 1 and 14 2 doses	
Multitarget regimen	Tacrolimus or cyclosporine plus MMF	0.05 mg/kg/d tacrolimus (target trough level 4-6 ng/mL) or 3-5 mg/kg/d cyclosporine (level is not well established) plus MMF 500-1,000 mg 2×/d × 6 mo	

The New England Journal of Medicine


©Copyright, 1992, by the Massachusetts Medical Society


Volume 326 MAY 21, 1992 Number 21

A CONTROLLED TRIAL OF PLASMAPHERESIS THERAPY IN SEVERE LUPUS NEPHRITIS

Edmund J. Lewis, M.D., Lawrence G. Hunsicker, M.D., Shu-Ping Lan, M.A., M.P.H., Richard D. Rohde, B.S., and John M. Lachin, Sc.D., for the Lupus Nephritis

Collaborative Study Group*

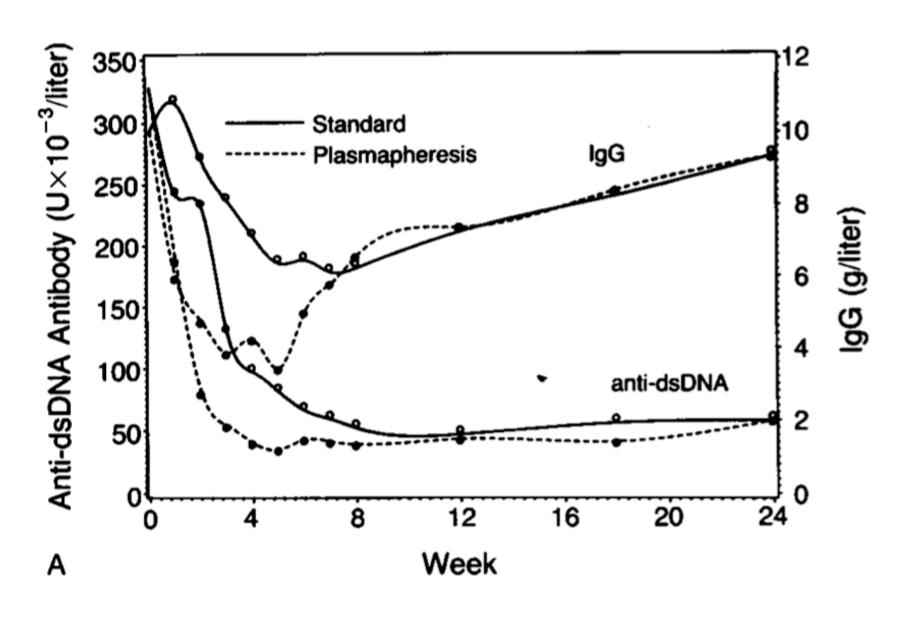
Treatment with plasmapheresis plus a standard regimen of prednisone and cyclophosphamide therapy does not improve the clinical outcome in patients with severe nephritis

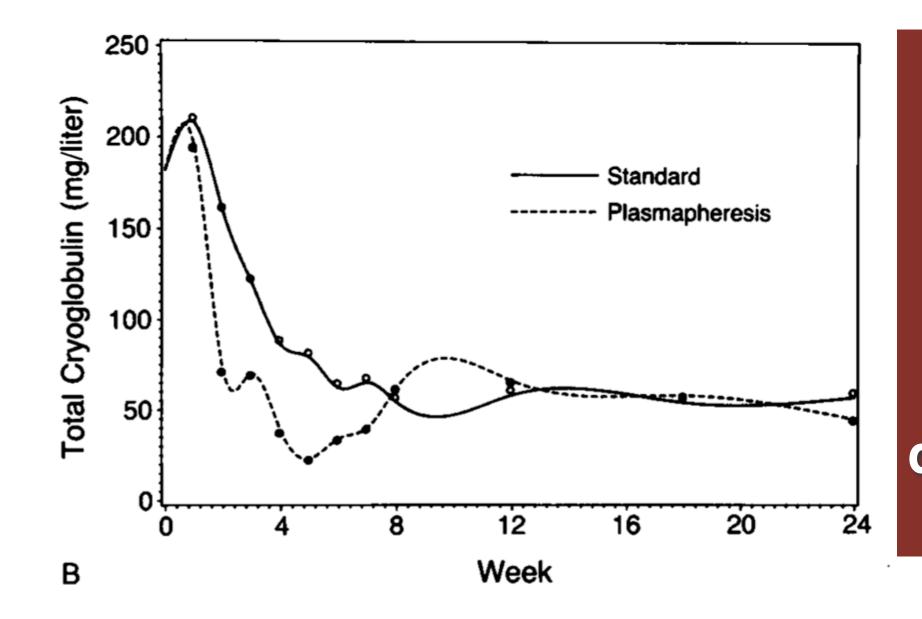
Lewis E, et al. N Engl J Med 1992;326:1373-9.

The New England Journal of Medicine

©Copyright, 1992, by the Massachusetts Medical Society

Volume 326


MAY 21, 1992


Number 21

A CONTROLLED TRIAL OF PLASMAPHERESIS THERAPY IN SEVERE LUPUS NEPHRITIS

Edmund J. Lewis, M.D., Lawrence G. Hunsicker, M.D., Shu-Ping Lan, M.A., M.P.H., Richard D. Rohde, B.S., and John M. Lachin, Sc.D., for the Lupus Nephritis

Collaborative Study Group*

Patients treated with plasmapheresis had a significantly more rapid reduction of serum concentrations of antibodies against double-stranded DNA and cryoglobulins

Lewis E, et al. N Engl J Med 1992;326:1373-9.

American Society for Apheresis 2019 indications for therapeutic apheresis

	Category	Evidence
Systemic lupus erythematosus (SLE): Severe complications		2C
Catastrophic antiphospholipid syndrome (CAPS)		2C
Thrombotic thrombocytopenic purpura (TTP; severe ADAMTS13 deficiency)		1 A
Microscopic polyangiitis (MPA)/granulomatous polyangiitis (GPA)/renal limited vasculitis (RLV): RPGN, Cr ≥5.7		1 A
MPA/GPA/RLV: DAH		1C

Treatment of LN relapse

Practice Point

- After a complete or partial remission has been achieved, LN relapse should be treated with the same initial therapy used to achieve the original response, or an alternative recommended therapy.
 - Ovarian failure has been associated with age and cumulative dose, with sustained amenorrhea occurring in up to 50% of patients aged >32 years with a cumulative exposure of 8 g/m²
 - The chance of future malignancy increases after a total exposure of 36 g, so if a patient is approaching this level, cyclophosphamide is better avoided

Clinical efficacy and side effects of antimalarials in systemic lupus erythematosus: a systematic review

G Ruiz-Irastorza,¹ M Ramos-Casals,² P Brito-Zeron,² M A Khamashta³

HCQ should be given to most patients with SLE during the whole course of the disease and be continued during pregnancy

Quality of evidence	АМ
High:	
Reduction of SLE activity (also in pregnancy)	CQ/HCQ
Reduction of mortality	CQ/HCQ
Moderate:	
Increase in BMD	HCO
Protective effect on thrombotic events	CQ/HCQ
Protective effect on irreversible organ damage	HCO
Low:	
Reduction of severe flares	HCO
Adjuvant effect for achieving LN remission	HCO
Beneficial effect on serum lipid levels	CQ/HCQ
Protective effect on osteonecrosis	HCO
Delaying the evolution to SLE	HCQ
Protective effect on cancer	CQ/HCQ

- We recommend that patients with SLE, including those with lupus nephritis (LN), be treated with hydroxychloroquine or an equivalent antimalarial unless contraindicated (1C)
 - Lower flare including kidney
 - Higher response rates to therapy
 - Lower incidence of CV and thrombotic events in APS patients
 - · Less organ damage
 - Improved lipid profiles
 - Preservation of bone mass

FDA Pharmaceutical Pregnancy categories

Category A	Adequate and well-controlled studies show no risk
Category B	No evidence of risk in humans; the chance of fatal harm is remote
Category C	Animal studies show a risk, but no human studies have been performed. Potential benefits may outweigh the risks.
Category D	Human studies show a risk Potential benefits may outweigh the risks.
Category X	Animal or human studies show a risk. The risk outweigh the potential benefits.

Immunosuppressive agents

Drug	Teratogenicity	Fetal/neonatal effects	FDA
Prednisone	Possible increase in oral cleft palate	Rare except at large doses (cataracts, infection and adrenal insufficiency)	В
Azathioprine	Possible sporadic congenital abnormalities	Transient immune alterations in neonates	D
Tacrolimus and cyclosporine	No	Hyperkalemia and renal impairment	C
Intravenous immunoglobulin	No	None reported	C

Adapted from Hladunewich MA, et al. Kidney Int: 2016: 89, 995–1007.

Immunosuppressive agents

Drug	Teratogenicity	Fetal/neonatal effects	FDA
Mycophenolate mofetil	Congenital abnormalities in 22.9%: absent auditory canal, hypertelorism, microtia, cleft lip and palate, brachydactyly of the fifth finger, limb abnormalities, and hypoplastic toenails	No	D
Cyclophosphamide	Yes	Chromosomal abnormalities and cytopenia	D
Sirolimus and Everolimus	Unknown	Toxicity in animal studies, but not teratogenicity	C

Adapted from Hladunewich MA, et al. Kidney Int: 2016: 89, 995–1007.

Pregnancy in patients with LN

Practice Point

- Patients with active LN should be counseled to avoid pregnancy while the disease is active or when treatment with potentially teratogenic drugs is ongoing, and for ≥6 months after LN becomes inactive.
- To reduce the risk of pregnancy complications, hydroxychloroquine should be continued during pregnancy, and low-dose aspirin should be started before 16 weeks of gestation.
- Glucocorticoids, hydroxychloroquine, azathioprine, tacrolimus, and cyclosporine are considered safe immunosuppressive treatments during pregnancy.

Patient characteristics	Serologic characteristics
 African or Hispanic ancestry Male Pediatric onset Frequent relapses Incomplete remission Neuropsychiatric lupus Proteinuria >4 g/d at diagnosis 	 Antiphospholipid antibodies or antiphospholipid syndrome Persistent hypocomplementemia High titer dsDNA antibodies High titer C1q antibodies

dsDNA, double-stranded DNA.

High risk for poor renal outcome

Serologic characteristics

- Antiphospholipid antibodies or antiphospholipid syndrome
 - Persistent hypocomplementemia
- High titer dsDNA antibodies
 High titer C1q antibodies

Histologic characteristics

- Crescentic glomerulonephritis
- Thrombotic microangiopathy
- Extensive tubulointerstitial damage

Intelligence Dialysis Center
Nephrology Unit
Phramongkutklao Hospital and College of Medicine