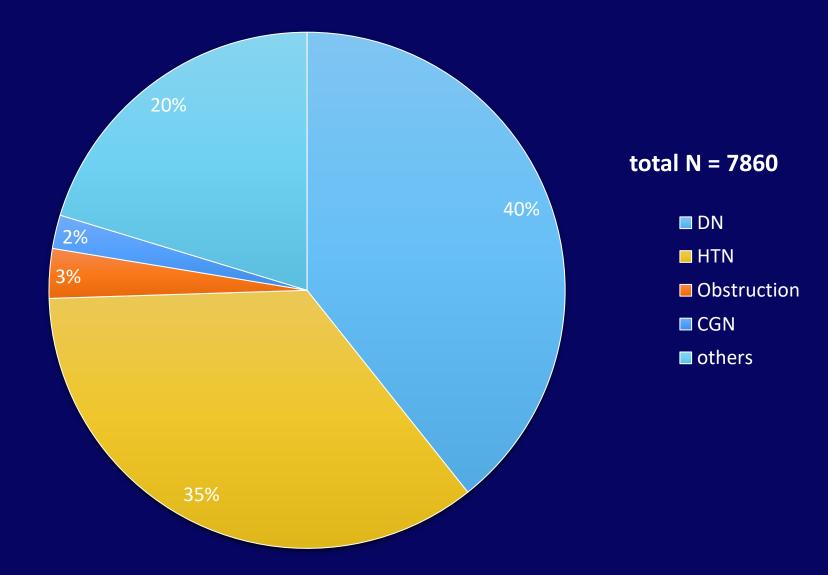

Diabetic nephropathy

Outline

- Epidemiology
- Definition
- Natural history
- Renal pathology
- Pathophysiology
- Risk factors
- Treatment


Prevalence of Diabetes Complications in Thailand

2.4 million Thai Diabetes Patients treated

2554 An Assessment on Quality of Care among Patients Diagnosed with type 2 Diabetes and Hypertension visiting Hospitals in care of Ministry of Public Health and Bangkok Metropolitan Administration in Thailand, 2011

Dialysis incidence cases in Thailand 2012

DEFINITION "DKD"

- Most patients with diabetes, CKD should be attributable to diabetes if:
 - Macroalbuminuria is present

or

- Microalbuminuria is present
 - in the presence of diabetic retinopathy
 - in type 1 diabetes of at least 10 years' duration

Relation of Diabetes nephropathy and diabetes retinopathy

- Type 1 DM : DR 90-95% (PDR 60%)
 - Early DR in early stage of overt nephropathy
 - Advanced DR relate to kidney pathology and have at least microalbuminuria
- Type 2 DM
 - Study in 35 pts with proteinuria (>300mg/day)
 - 27 (77%) found DN
 - 15/27 (56%) found DR

When to considered for Other causes of CKD

- Absence of diabetic retinopathy
- Low or rapidly decreasing GFR
- Rapidly increasing proteinuria or nephrotic syndrome
- Refractory hypertension
- Presence of active urinary sediment
- Signs or symptoms of other systemic disease
- >30% reduction in GFR within 2-3 months after initiation of an ACE inhibitor or ARB.

Parameter to distinguish non-DN from DN (meta-analysis)

- 26 relevant studies with 2,322 patients
- Distinguish NDRD from DN in patients with diabetes
 - Absence of DR
 - Shorter duration of DM
 - Lower HbA1C
 - Lower BP

When to screening

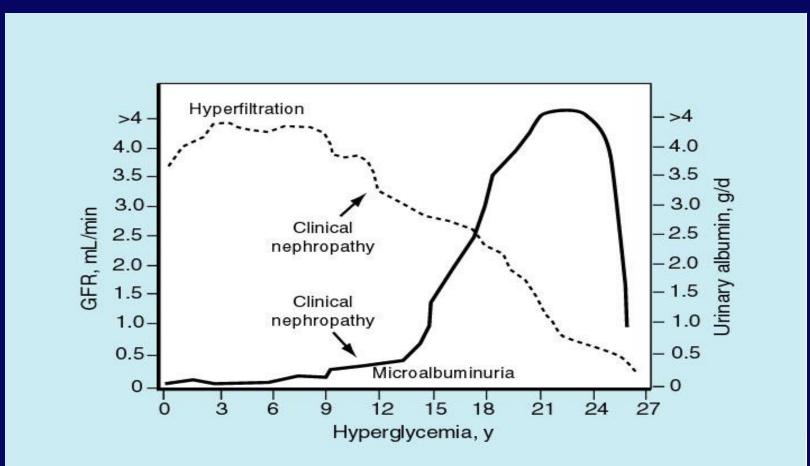
- Initial screening :
 - 5 years after the diagnosis of type 1 diabetes
 - From diagnosis of type 2 diabetes
- Patients with diabetes should be screened annually for DKD.
- Screening should include:
 - Urine dipstick/microalbuminuria
 - Measurements of UACR in a spot urine sample
 - Measurement of serum creatinine and estimation of GFR

Screening

Recommendations

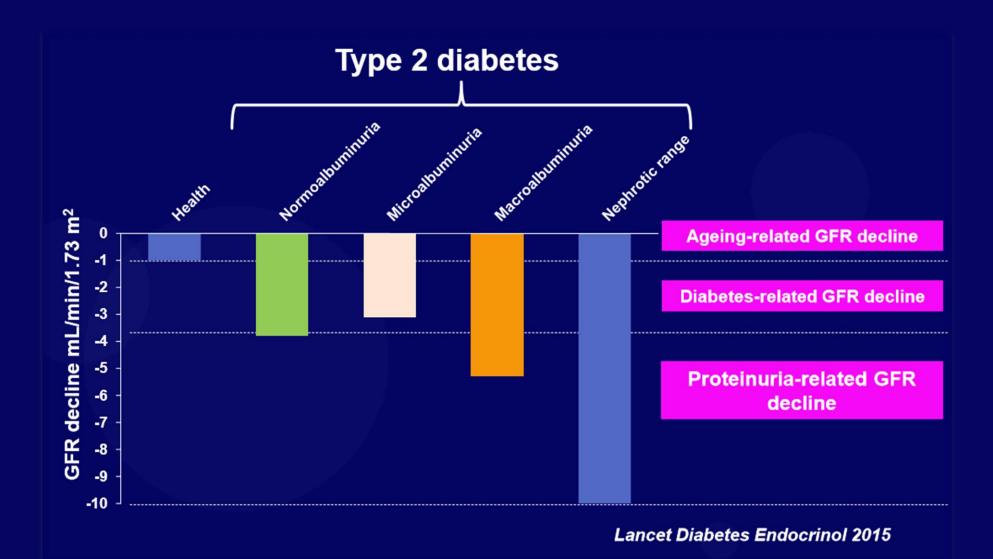
- At least once a year, assess UACR and eGFR in patients with type 1 DM \geq 5 years and all patients with type 2 DM regardless of treatment.
- Patients with UACR >30 mg/g creatinine and/or an eGFR <60 mL/min/1.73 m² should be monitored twice annually to guide therapy. C

Definition of Abnormal Albuminuria in Diabetes Mellitus

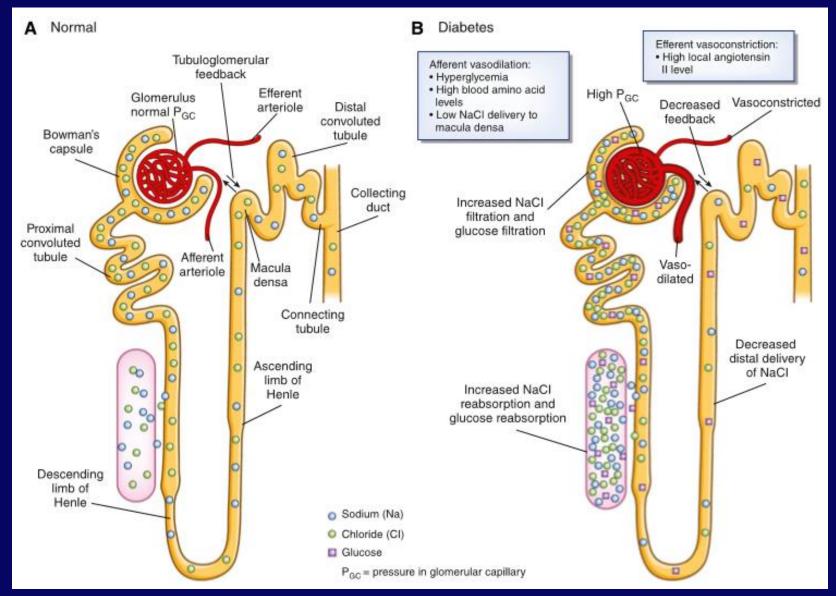

		Microalbuminuria		Macroalbuminuria (Nephropathy)			
Albuminuria categories in CKD							
	AER	ACR (approximate equi					
Category	(mg/24 hours)	(mg/mmol)	(mg/g)	Terms			
A1	<30	<3	< 30	Normal to mildly increased			
A2 A3	30-300 > 300	3-30 > 30	30-300 >300	Moderately increased* Severely increased**			
		nephropathy in some		renal disease			
Cardiovascular Risk		Increased		Increased			

* Random (Spot) urine preferably A.M. recommended

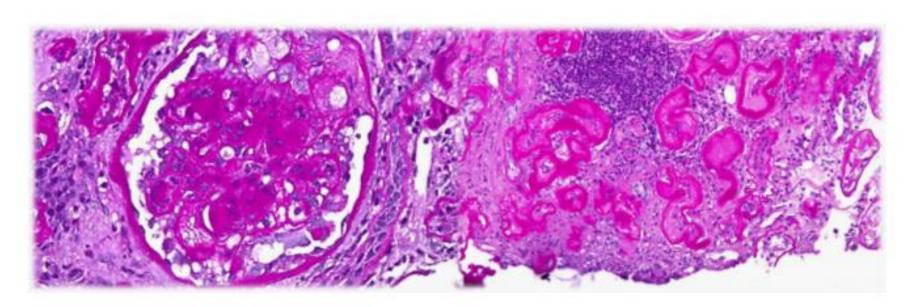
Diabetic nephropathy staging


	Designation	Characteristics	GFR Albumin (ml/min) excretion		Blood pressure	
Stage1	Hyperfunction and Hypertrophy	Glomerular hyperfiltration	Increase	May be increase	Normal	
Stage2	Silent stage	Thickened BM Expanded mesangium	Normal	<30 mg/24hr	Normal	
Stage3	Incipient	Microalbuminuria	GFR begins to fall	30- 300mg/24hr	High	
Stage4	Overt diabetic nephropathy	Macroalbuminuria	GFR fall	>300mg/24hr	High	
Stage5	Uremia	ESRD	0-10	Decreasing	High	

Natural History of DKD

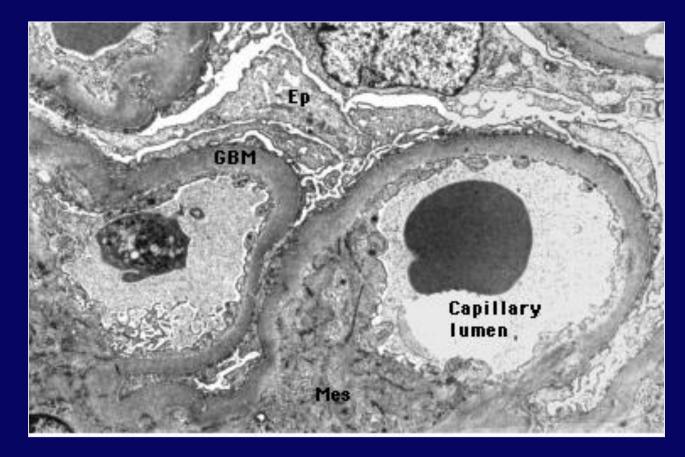


Overt nephropathy is typically between 10 and 15 years after the onset of the disease.


Loss of renal function in T2DM patients

Nephron with altered renal hemodynamics in diabetic kidney

Pathology

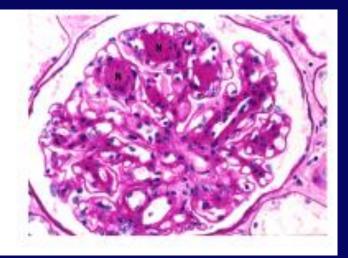

Typical diabetic nephropathy

- Nodular mesangial expansion
- Thickened GBM
- Arteriolar hyalinosis

Atypical patterns of renal injury

- Tubular atrophy
- Thickened tubular BM
- Interstitial fibrosis/inflammation
- Advanced arteriolar hyalinosis

Early lesion



GBM Thickening is a characteristic early change in type 1 and type 2 DN

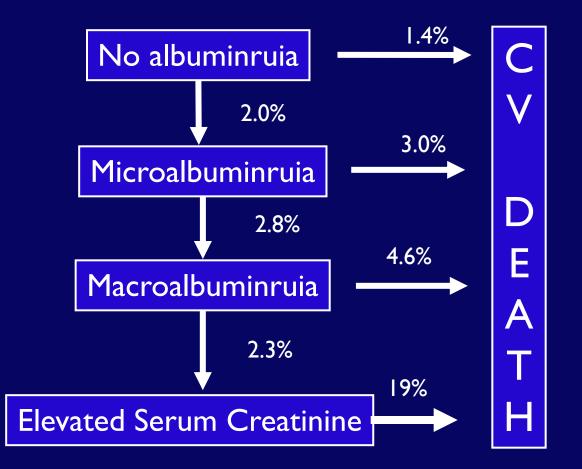
Perrin NE, et al. Kidney Int 69: 699-705: 2006

Kimmelstiel-Wilson lesion

"Kimmelstiel–Wilson syndrome" nodular glomerulosclerosis ,a hallmark of diabetic nephropathy

-Longer duration of diabetes
-Severity of retinopathy
-Higher serum creatinine
-Poor prognosis

Not specific for DN


- -Dysproteinemias
- -MIDD

-Fibrillary and immunotactoid GN -Chronic MPGN

-Idopathic nodular glomerulosclerosis

Diabetics with Macroalbuminuria are More Likely to Die than Develop ESRD

The United Kingdom Prospective Diabetes Study (approx. 5000 Type 2 Diabetics) Newly diagnosed, predominantly white, medically treated

PATHOPHYSIOLOGY

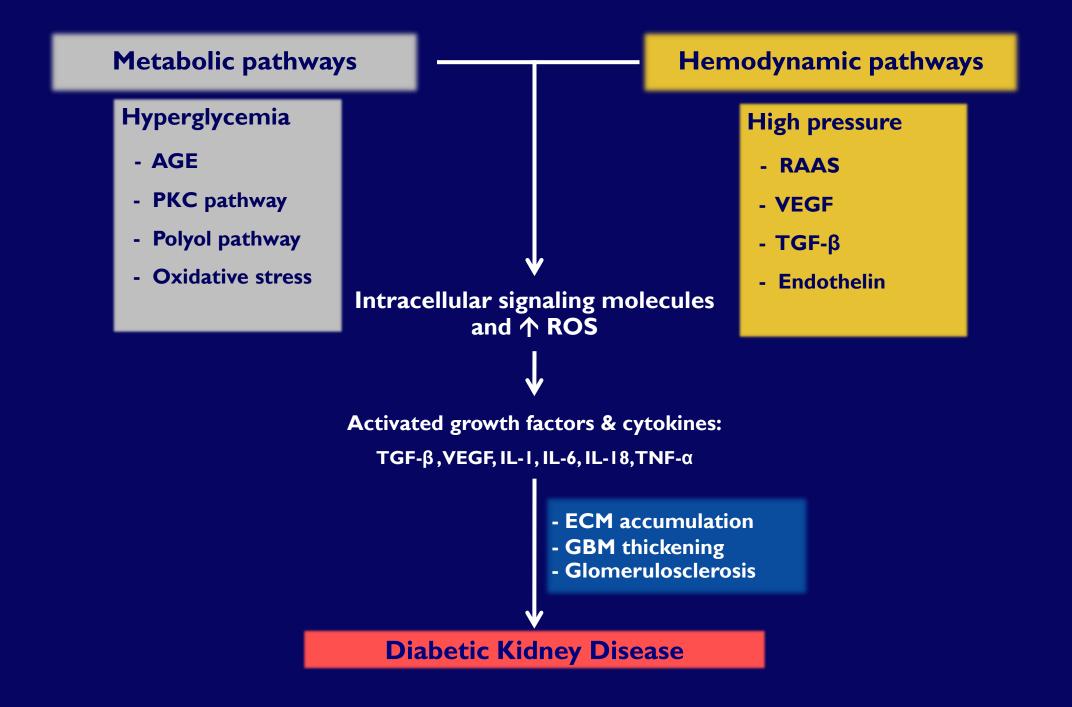
- Metabolic Effects

 -Glucotoxicity
 -Polyol Pathway

 Hemodynamic Effects

 -Systemic BP
- 3. <u>Signaling Pathways</u>
 - -Kinase Pathways

-Nuclear Factors

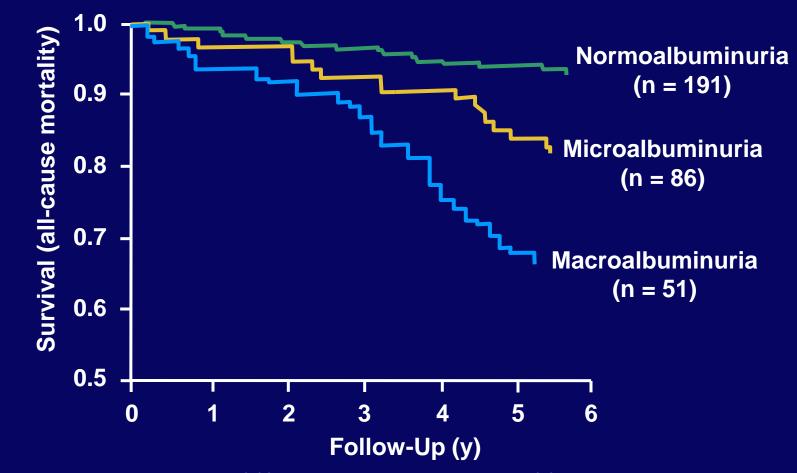

4. Cytokines, Chemokines and Growth Factors

TGF-β, IGF-I, VEGF, MCP-1, Angiotensin, Aldosterone

5. Genetic Factors

-AGEs -Oxidative Stress

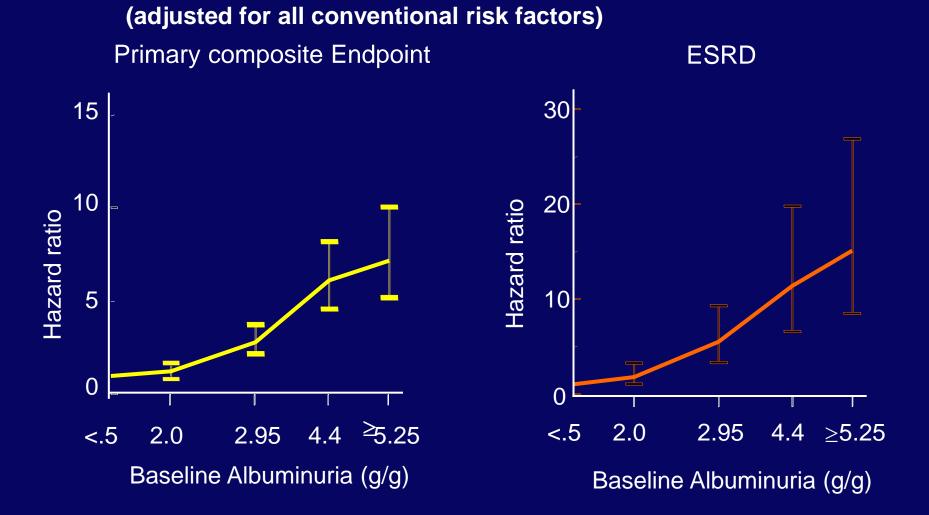
-Intraglomerular pressure



Genetic factors

Table 1 Some of the genes implicated in the susceptibility and/or progression of diabetic nephropathy (modified after 12)

Gene	Gene variant			
Promoter of RAGE	63-bp deletion (decreased risk)			
Histocompatibility antigen	DR3/4			
Angiotensin-converting enzyme	D/I			
Angiotensinogen	M235T			
Aldose reductase	Z + 2 alleles			
Transforming growth factor $\beta 1$	Leu10Pro, Arg25Pro			
Apolipoprotein E	e2 allele			
Paraoxonase 1	T107C, Leu54Met			
Interleukin 1β	T105C			
Atrial natriuretic peptide	C708T			
Glucose transporter 1	Xba1/HacIII			
Mannose-binding lectin	YA/YA, XA/YA			


Proteinuria Is a Risk Factor for Mortality

P<0.01 normo- vs microalbuminuria; P<0.001 normo- vs macroalbuminuria; P<0.05 micro- vs macroalbuminuria.


Gall et al. Diabetes. 1995;44:1303-1309.

Proteinuria as a Determinant for RENAL Events

De Zeeuw et al; Kidney Int 2004

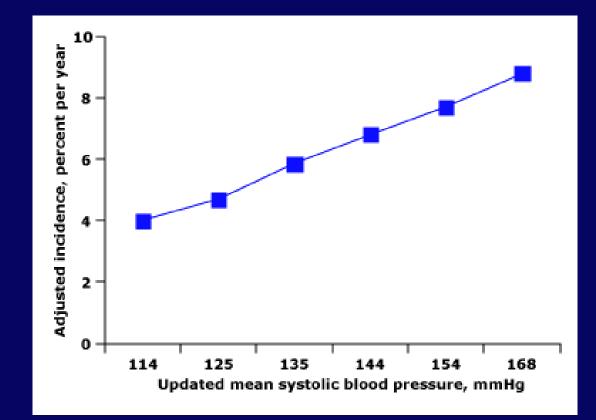
Proteinuria "Important marker"

- Predictor of kidney function deterioration, DN progression and CV death
- Risk for ESRD increases as proteinuria increases and eGFR decreases.

Treatment of diabetic nephropathy

Specific treatment

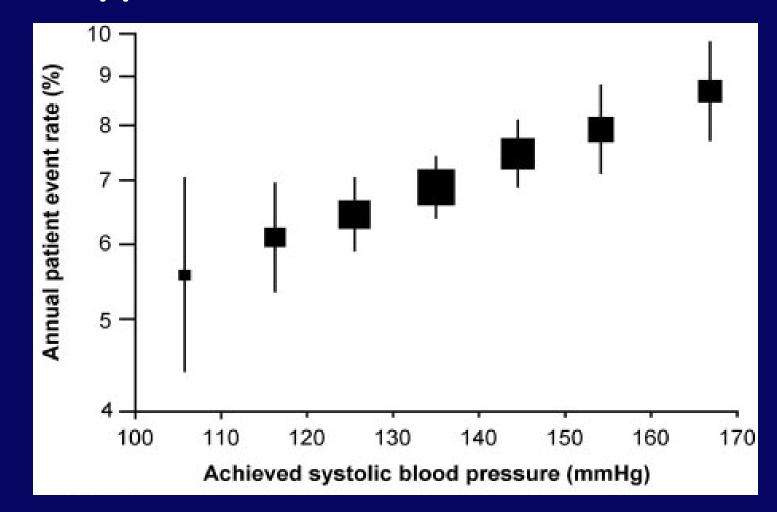
- 4 major arenas
- Blood pressure control
- Inhibition of the renin-angiotensin system (RAS)
- Glycemic control
- Cardiovascular risk reduction


Reno-cardioprotection in DKD

Intervention	Therapeutic goal				
Renoprotective therapy					
Antihypertensive agents	BP ≤130/80 mmHg for albuminuria≥ 30 mg/day BP ≤140/90 mmHg for albuminuria< 30 mg/day				
ACEi or ARB	Urine protein <0.5-1.0 g/day				
(Avoid combining ACEi+ARB)	GFR decline <2 mL/min/year				
Glycemic control	HbA1c~7%				
Dietary protein restriction	0.8 g/kg/day in GFR < 30 mL/min/1.73 m ²				
Adjunctive cardiorenal protective therapy					
Dietary salt restriction	<5 g/day				
Lipid-lowering agents (statin)	LDL-C <70-100 mg/dL				
Anti-platelets therapy	Thrombosis prophylaxis				
Physical activity	Aiming for at least 30 minutes 5 times per wk)				
Weight control	Ideal body weight				
Smoking cessation Abstinence					

Satirapoj B, Adler SG. Kidney Res Clin Pract. 2014; 121–131.

Hypertensive control


UKPDS study: Lower systolic pressure reduces complications in type 2 diabetes (3,642 pts)

Each 10 mmHg reduction in systolic BP \rightarrow 12% risk reduction in diabetic complications (P<0.001) The lowest risk occurred at a systolic BP < 120 mmHg

Adler, AI,, et al, BMJ 2000; 321:412.

ADVANCE Study: Lowering SBP reduces renal events in type 2 diabetes

Harrap S, et al. J Am Soc Nephrol. 2009 *Apr;*20(4):883-92

Effects of Intensive Blood-Pressure Control in Type 2 Diabetes Mellitus

The ACCORD Study Group*

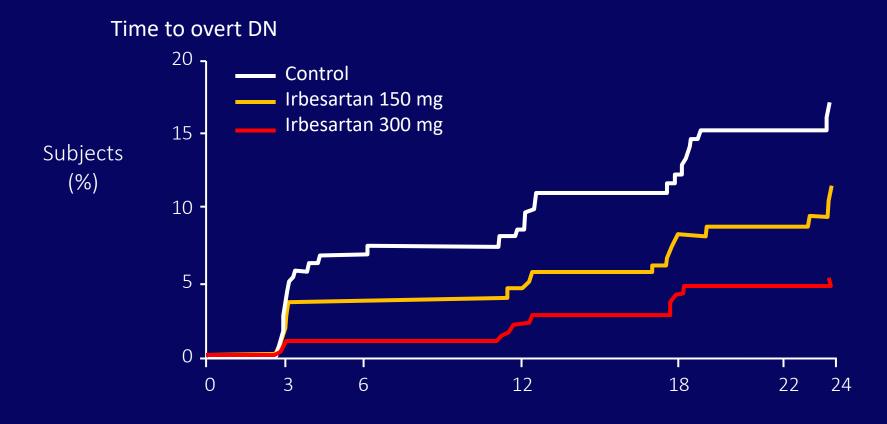

- 4733 participants with type 2 DM
- Intensive therapy : targeting a SBP <120 mmHg (119.3mmHg)
- Standard therapy : targeting a SBP <140 mmHg (133.5mmHg)
- Conclusions : In patients with type 2DM at high risk for cardiovascular events, targeting a SBP <120 mm Hg, as compared with <140 mm Hg, did not reduce the rate of a composite outcome of fatal and nonfatal major cardiovascular events.

Table 3. Primary and Secondary Outcomes.							
Outcome		Intensive Therapy (N=2363)		Standard Therapy (N=2371)		Hazard Ratio (95% CI)	P Value
		no. of events	%/yr	no. of events	%/үr		
Primary outcome*		208	1.87	237	2.09	0.88 (0.73-1.06)	0.20
Prespecified secondary outcomes							
	Nonfatal myocardial infarction	126	1.13	146	1.28	0.87 (0.68–1.10)	0.25
	Stroke						
	Any	36	0.32	62	0.53	0.59 (0.39-0.89)	0.01
	Nonfatal	34	0.30	55	0.47	0.63 (0.41-0.96)	0.03
	Deam						
	From any cause	150	1.28	144	1.19	1.07 (0.85–1.35)	0.55
	From cardiovascular cause	60	0.52	58	0.49	1.06 (0.74–1.52)	0.74
	Primary outcome plus revasculariza- tion or nonfatal heart failure	521	5.10	551	5.31	0.95 (0.84–1.07)	0.40
	Major coronary disease event†	253	2.31	270	2.41	0.94 (0.79–1.12)	0.50
	Fatal or nonfatal heart failure	83	0.73	90	0.78	0.94 (0.70-1.26)	0.67

- Intensive BP management did reduce the rate of total stroke and nonfatal stroke.
- NNT to prevent one stroke over the course of 5 years was 89

Inhibition of the renin-angiotensin system

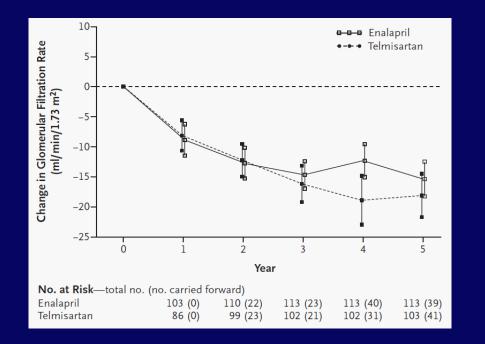
BENEDICT: ACEI: Preventing Microalbuminuria in Type 2 Diabetes with HT/normoalbuminuria



T2DM and HTN, normoalbuminuria and normal GFR

Trandolapril plus verapamil or trandolapril alone prevented the onset of microalbuminuria

Ruggenenti P, et al. New Eng J Med 2004; 351:

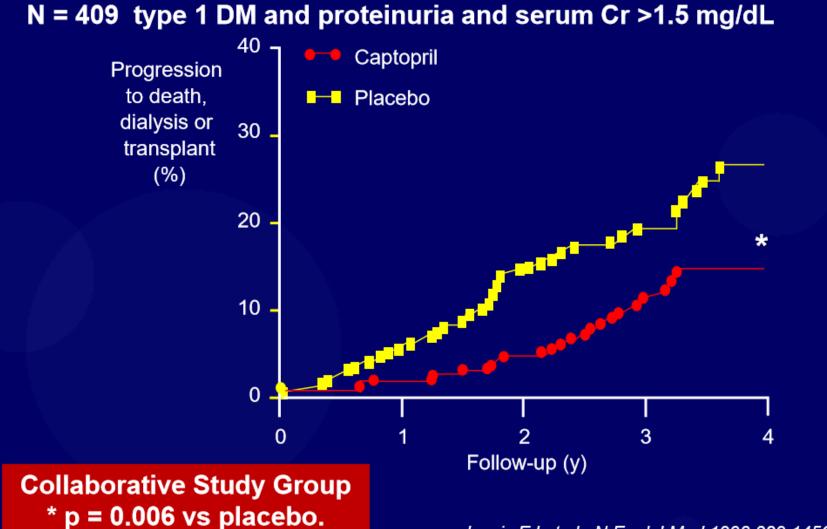

IRMA 2 : ARB : slow progression from microalbuminuria to Overt Proteinuria

Follow-up (mo)

ARB vs ACEI in type 2 diabetes and nephropathy

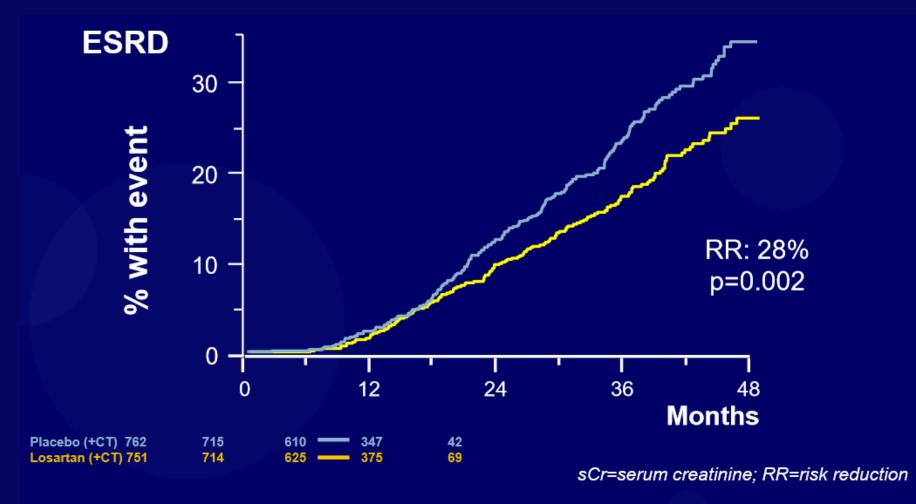
250 patients with early nephropathy as defined by albuminuria (82% microalbuminuria and 18% macroalbuminuria)

End point	Change from baseline		Difference	
	Telmisartan	Enalapril	(95% CI)	
Serum creatinine (mg/dL)	0.10	0.10	0 (-0.66 to 0.65)	
Urinary albumin excretion (ratio)	1.03	0.99	1.04 (0.71to 1.51)	


ACEI are at least as effective as ARBs in diabetic patients with microalbuminuria.

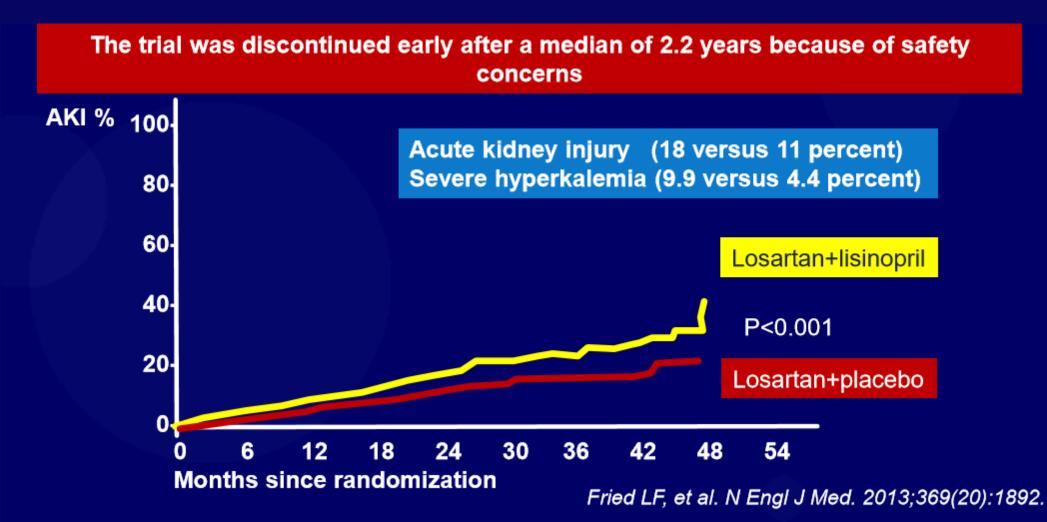
Barnett AH, et al. N Engl J Med 2004 Nov 4;351(19):1952-61.

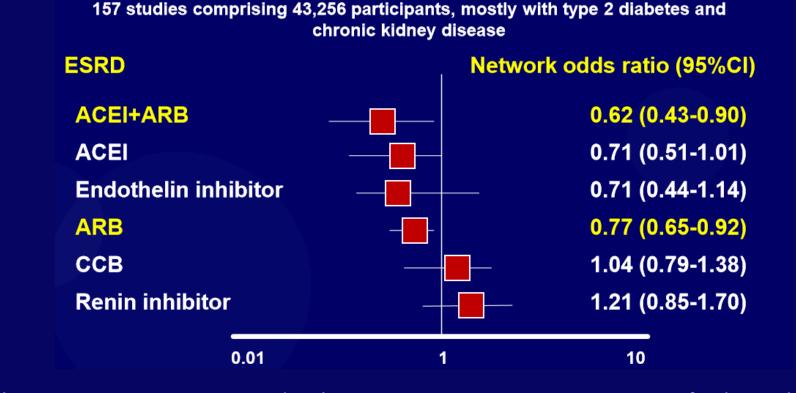
ACE Inhibitors vs. Other Antihypertensives in Patients with Type 2 Diabetes and Proteinuria


Investigator	Treatment	Follow- up (y)	Prote	einuria		e in GFR nin/yr)
			ACE inhibitor	Non-ACE inhibitor	ACE inhibitor	Non-ACE inhibitor
Walker et al (n=86)	ACE inhibitor vs conventional therapy	3	$\downarrow\downarrow$	\downarrow	3.0	4.1
Lebovitz et al (n=46)	ACE inhibitor vs conventional therapy	3	Ļ	\rightarrow	6.4	9.6
Bakris et al (n=52)	ACE inhibitor vs CCB vs beta blocker	5	$\downarrow\downarrow$	$\stackrel{\downarrow\downarrow}{\downarrow}(\text{CCB})\\\stackrel{\downarrow}{\downarrow}(\text{BB})$	1.0	1.4 (CCB) 3.3 (BB)
Nielsen et al (n=36)	ACE inhibitor vs beta blocker	3	$\downarrow\downarrow$	\rightarrow	7.0	6.5
Estacio et al (n=83)	ACE inhibitor vs CCB	5	\downarrow	\downarrow	5.5	5.5
Fogari et al (n=51)	ACE inhibitor vs CCB	2	$\downarrow\downarrow$	\downarrow	2.0	1.2

ACEI on nephropathy in T1DM patients

Lewis EJ et al. N Engl J Med 1993;329:1456-1462.


RENAAL study : ARBs on ESRD in T2DM


Adapted from Brenner BM et al N Engl J Med 2001;345(12):861-869.

Combined ACEI and ARBs (VA NEPHRON-D)

1448 patients with DN (GFR 54ml/min/1.73m2, albuminuria 852mg/g)

BP lowering agents in diabetic and kidney disease patients : A network meta-analysis

Borderline increases in estimated risk

OR 2.69, 95%CI 0.97-7.47 for hyperkalemia OR 2.69, 95% CI 0.98-7.38 for AKI

Dual RAAS blockade for kidney failure: hope for the future

• Treating 1,000 patients with diabetes and CKD with dual ACEI and ARB treatment vs monotherapy for 1 year

- Prevent 3 cases of ESRD
- Regress albuminuria in 90 people

ADA 2020

• In nonpregnant patients with diabetes and hypertension, either an ACEi or ARB is recommended for those with UACR \geq 300 mg/g creatinine and/or estimated GFR <60 mL/min/1.73 m².

• Periodically monitor serum creatinine and potassium levels when ACEi, ARB, or diuretics are used.

• An ACEi or ARB is not recommended for the primary prevention of CKD in patients with diabetes who have normal BP, normal UACR (<30 mg/g creatinine), and normal GFR.

ACEI and ARBs warnings

- Angioedema
- Hyperkalemia
- Acute kidney injury
 - Severe bilateral renal artery stenosis
 - Volume depletion
- Pregnancy category C in 1st trimester
 - Adverse effect on the fetus in animal with CVS (ASD/VSD) and CNS (spina bifina, microcephaly) malformations
- Pregnancy category D in 2nd & 3rd trimester
 - Positive evidence of human renal dysgenesis, oligohydramnios and death

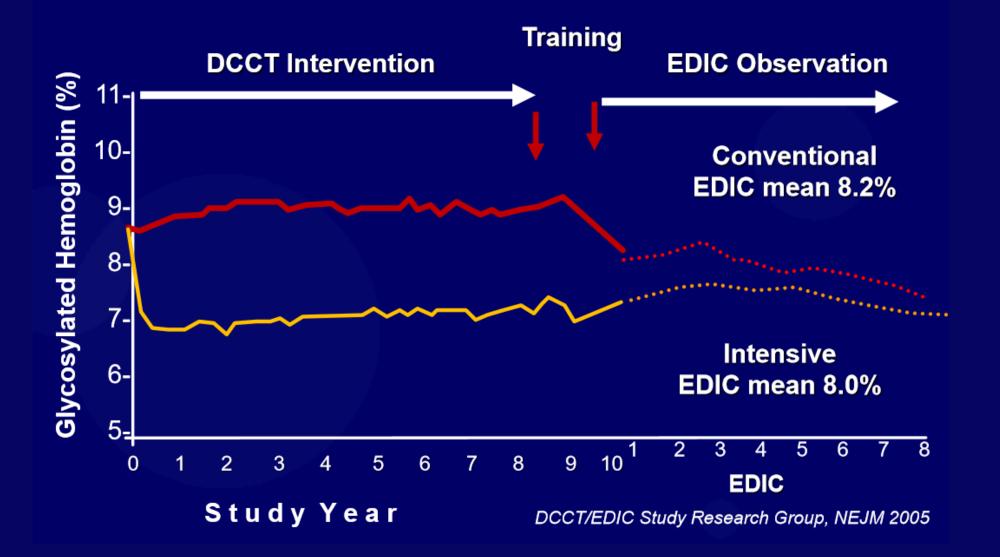
KDIGO : management of BP in CKD

Individualize BP targets and agents according to age, co-existent cardiovascular disease and other co-morbidities, risk of progression of CKD, presence or absence of retinopathy and tolerance of treatment

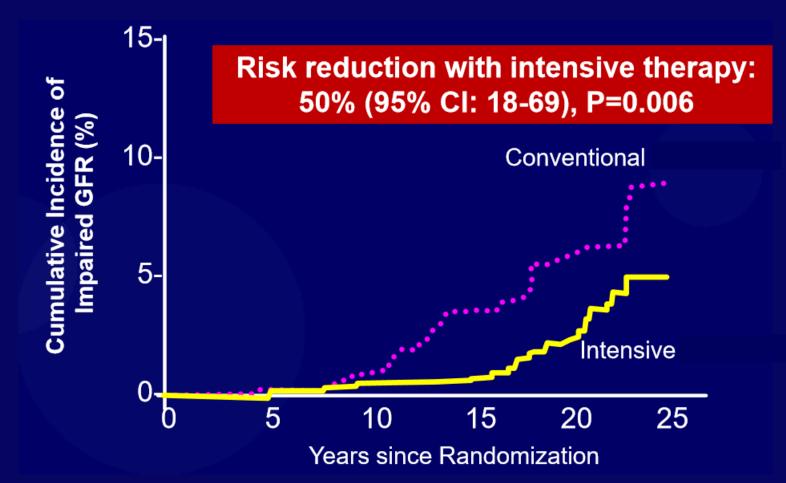
	Albuminuria (ACR <30 mg/g)	Albuminuria (ACR 30-300 mg/g)	Albuminuria (ACR >300mg/g)
Diabetes	<140/90 (1B)	<130/80 (2D)	<130/80 (2D)
Non diabetes	<140/90 (1B)	<130/80 (2D)	<130/80 (2C)

Kidney International Supplements (2012) 2, 338

ADA 2017

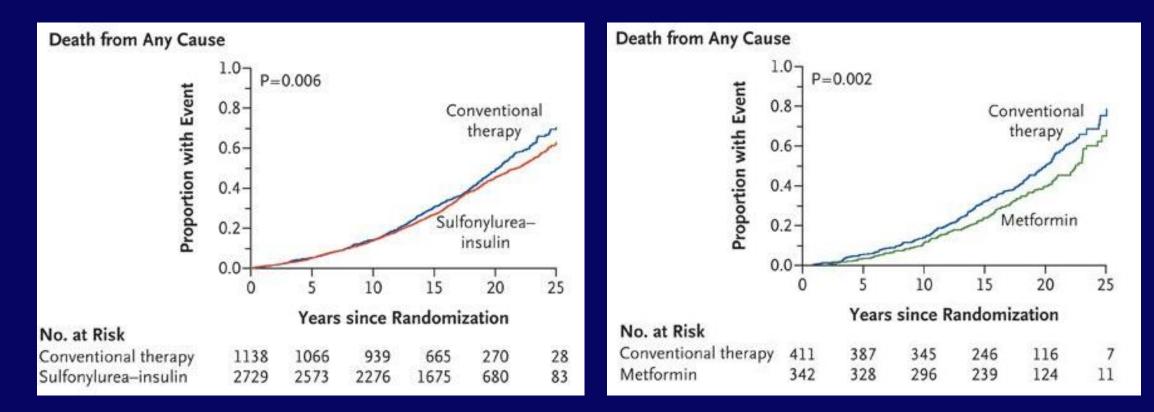

- The hypertension treatment recommendation for diabetes now suggests that for patients without albuminuria, any of the
 - ACE inhibitors,
 - angiotensin receptor blockers,
 - thiazide-like diuretics,
 - dihydropyridine calcium channel blockers
 - that have shown beneficial cardiovascular outcomes may be used.

Glycemic control


Intensive glycemic control reduce in incidence of microvascular complications

HbA1c	Type 1 <u>DCCT</u> 9 → 7%	Type 2 <u>Kumamoto</u> 9 → 7%	Type 2 <u>UKPDS</u> 8 → 7%
Retinopathy	76%	69%	17-21%
Nephropathy	54%	70%	24-33%
Neuropathy	60%	-	-

EDIC (long term observation from DCCT)



Long-term risk of an impaired GFR was significantly lower in intensive therapy

The DCCT/EDIC Research Group. N Engl J Med 2011;365:2366-76.

Metabolic Memory Effect in UKPDS study

Conclusion: Early glycemic control may be critically important for long term outcome

Holman R, et al. N Engl J Med; 2008: 359: 1577.

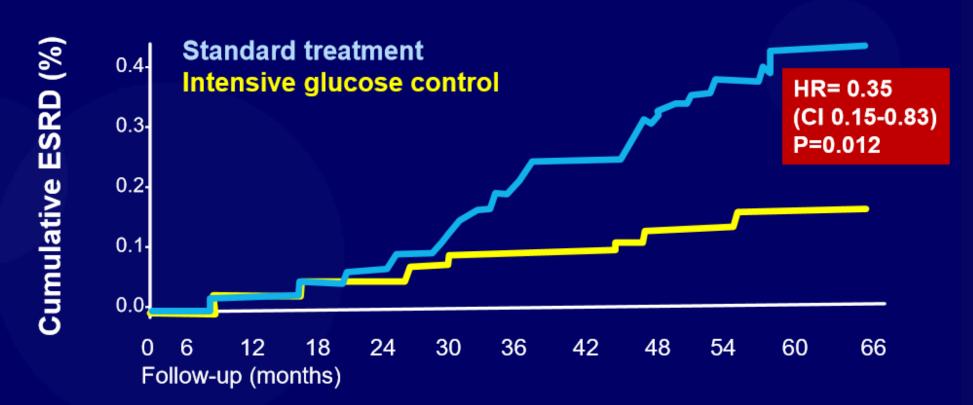
Intensive glucose lowering studies

	ACCORD ¹	ADVANCE ³	VADT⁴
Number of patients	10,251	11,140	1791
HbA1c with intensive vs standard treatment	6.4% vs 7.5%	6.4% vs 7.0%	6.9% vs 8.4%
Diabetes duration	10 yrs	8 yrs	11.5 yrs
Effect on cardiovascular risk	Decreased risk of nonfatal MI; increased risk of death from CVD	No benefit	No benefit
Effect on mortality	Increased*	No difference	No difference
Adverse effects	More hypoglycemia, weight gain, fluid retention	More hypoglycemia, weight gain	More hypoglycemia, weight gain

1. ACCORD Study Group. N Engl J Med. 2008;358:2545-2559. 2. Ismail-Beigi F, et al. Lancet. 2010;376:419-430.

3. ADVANCE Collaborative Group. N Engl J Med. 2008;358:2560-2572.

4. Duckworth W, et al. N Engl J Med. 2008;360:129-139.


Intensive therapy and albuminuria outcome

Study	Intensified treatment versus normal treatment HbA1C goals	Albuminuria outcome
ADVANCE	6.5% vs 7.3%	9% ↓ in new ACR 3-30 mg/mmol 30% ↓ in ACR progression to >30 mg/mmol
ACCORD	6.3% vs 7.6%	21% ↓ in new ACR 3-30 mg/mmol 32% ↓ in ACR progression to >30 mg/mmol
VADT	6.9% vs 8.4%	32% ↓ in new ACR 3-30 mg/mmol 37% ↓ in ACR progression to >30 mg/mmol

KDIGO CLINICAL PRACTICE GUIDELINE FOR EVALUATION AND MANAGEMENT OF CKD 2012

Intensive glycemic control reduces ESRD in T2DM

ADVANCE trial randomly assigned 11,140 participants

Perkovic V, et al. Kidney International (2013) 83, 517–523

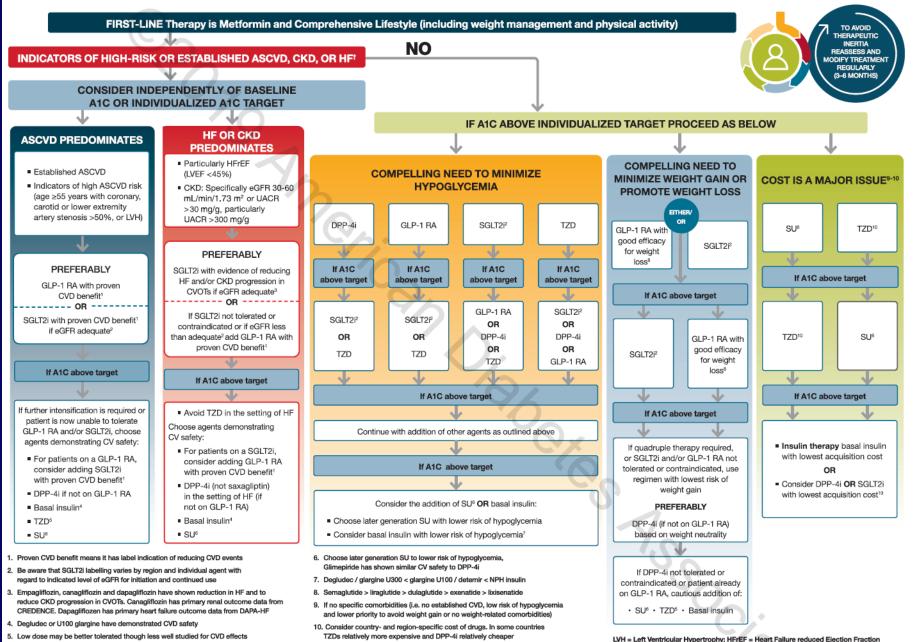
HbA1C target?

- Individual tailored strategy : risk and benefit?
- Goals should be individualized based on*
 - Duration of diabetes
 - Age/life expectancy
 - Comorbid conditions
 - Known CVD or advanced microvascular complications
 - Hypoglycemia unawareness
 - Individual patient considerations

HbA_{1c} target

• A reasonable A1C goal for many nonpregnant adults is <7%. A

A1C	<7.0% (53 mmol/mol)*
Preprandial capillary plasma glucose	80–130 mg/dL* (4.4–7.2 mmol/L)
Peak postprandial capillary plasma glucose†	<180 mg/dL* (10.0 mmol/L)


More or less stringent glycemic goals may be appropriate for individual patients

Assessing risk of diabetes complications

- ASCVD and heart failure history
- ASCVD risk factors and 10-year ASCVD risk assessment
- Staging of chronic kidney disease
- Hypoglycemia risk

A1C goals = 8% in

- History of severe hypoglycemia
- Limited life expectancy
- Advanced microvascular or macrovascular complications
- Extensive comorbid conditions
- Long-standing diabetes in whom the general goal is difficult to attain

† Actioned whenever these become new clinical considerations regardless of background glucose-lowering medications.

UACR = Urine Albumin-to-Creatinine Ratio; LVEF = Left Ventricular Ejection Fraction

High risk or established ASCVD/CKD/HF

ASCVD PREDOMINATES

Established ASCVD

 Indicators of high ASCVD risk (age ≥55 years with coronary, carotid or lower extremity artery stenosis >50%, or LVH)

PREFERABLY

GLP-1 RA with proven CVD benefit¹

OR

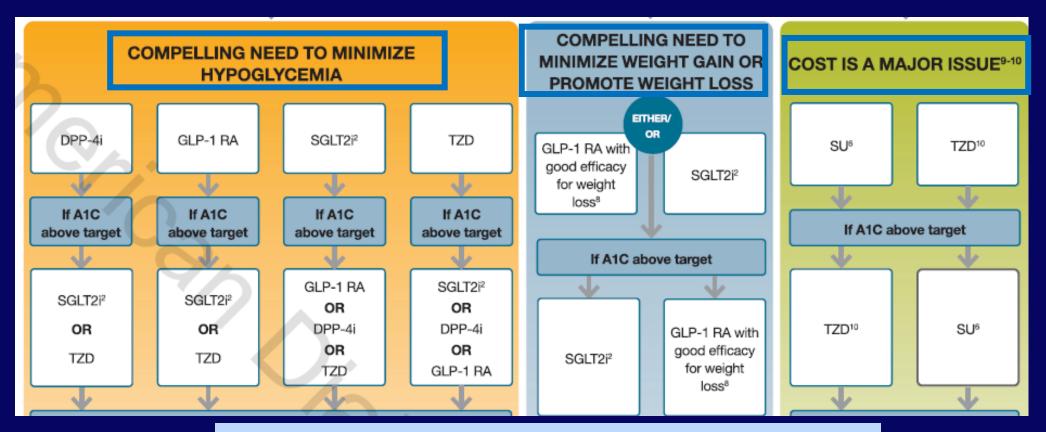
SGLT2i with proven CVD benefit¹ if eGFR adequate²

HF OR CKD PREDOMINATES

- Particularly HFrEF (LVEF <45%)
- CKD: Specifically eGFR 30-60 mL/min/1.73 m² or UACR >30 mg/g, particularly UACR >300 mg/g

PREFERABLY

SGLT2i with evidence of reducing HF and/or CKD progression in CVOTs if eGFR adequate³

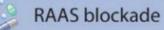

If SGLT2i not tolerated or contraindicated or if eGFR less than adequate² add GLP-1 RA with proven CVD benefit¹

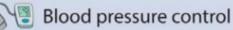
Selection of Glucose-Lowering Medications for Patients With Chronic Kidney Disease

- Optimize glucose control to reduce the risk or slow CKD progression. A
- Consider use of SGLT2 inhibitors in patients with GFR ≥ 30 mL/min/1.73 m2 and UACR >30 mg/g, particularly in those with UACR >300 mg/g, to reduce risk of CKD progression, cardiovascular events, or both. A
- In patients with CKD who are at increased risk for cardiovascular events, use of GLP-1 RAs may reduce risk of progression of albuminuria, cardiovascular events, or both. C

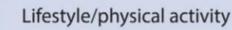
Special considerations : limitations of medications, mitigation of CKD progression, CVD, and hypoglycemia

Not high risk or established ASCVD/CKD/HF


- Minimize hypoglycemia
- Minimize weight gain or promote weight loss
- cost


KDIGO 2019 :Comprehensive management to reduce risks of kidney disease progression and cardiovascular disease in DM+ CKD.

Diabetes with CKD: cardio-kidney treatment



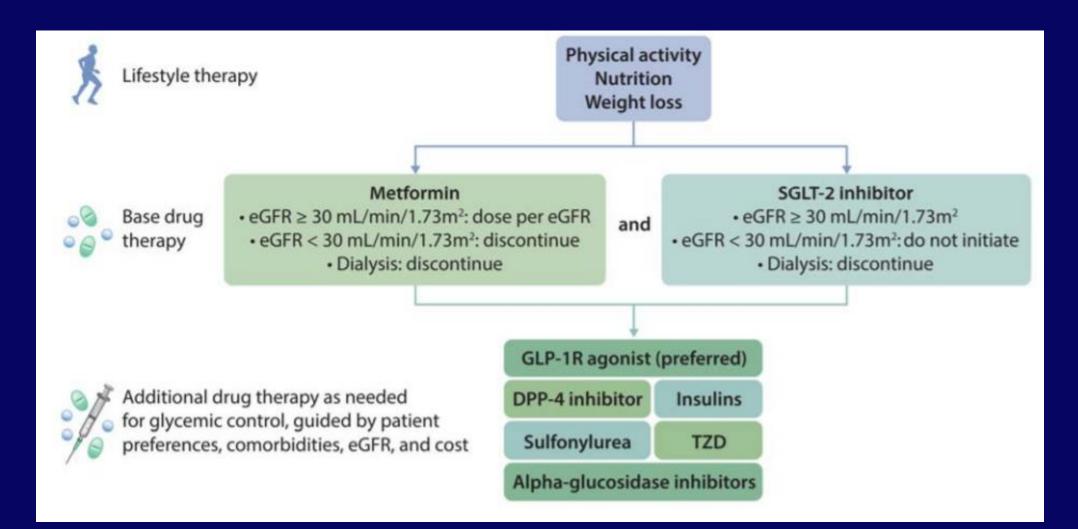
Glycemic control including SGLT2 inhibitors

Lipid management

Smoking cessation

Nutrition

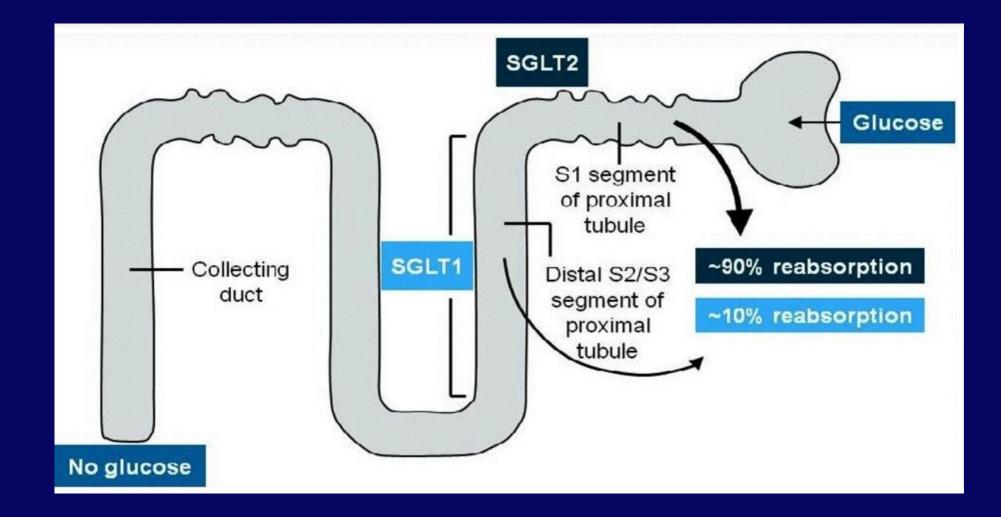
Aspirin for prevalent cardiovascular disease

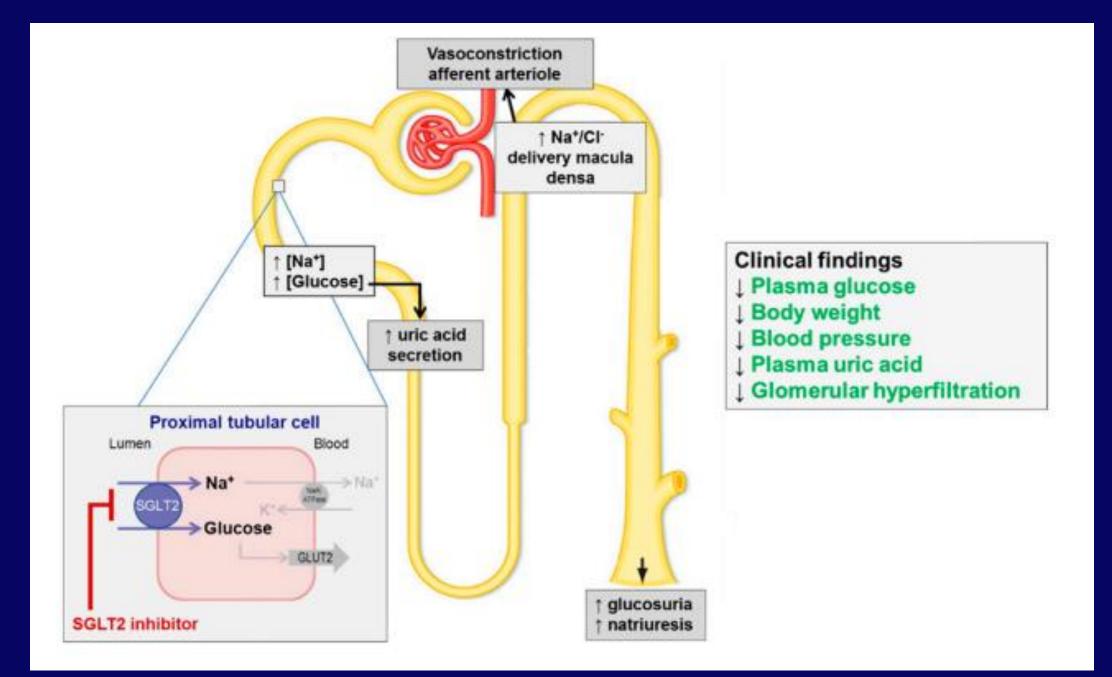


KDIGO CLINICAL PRACTICE GUIDELINE ON DIABETES MANGEMENT IN CHRONIC KIDNEY DISEASE

Glucose-Lowering Medications

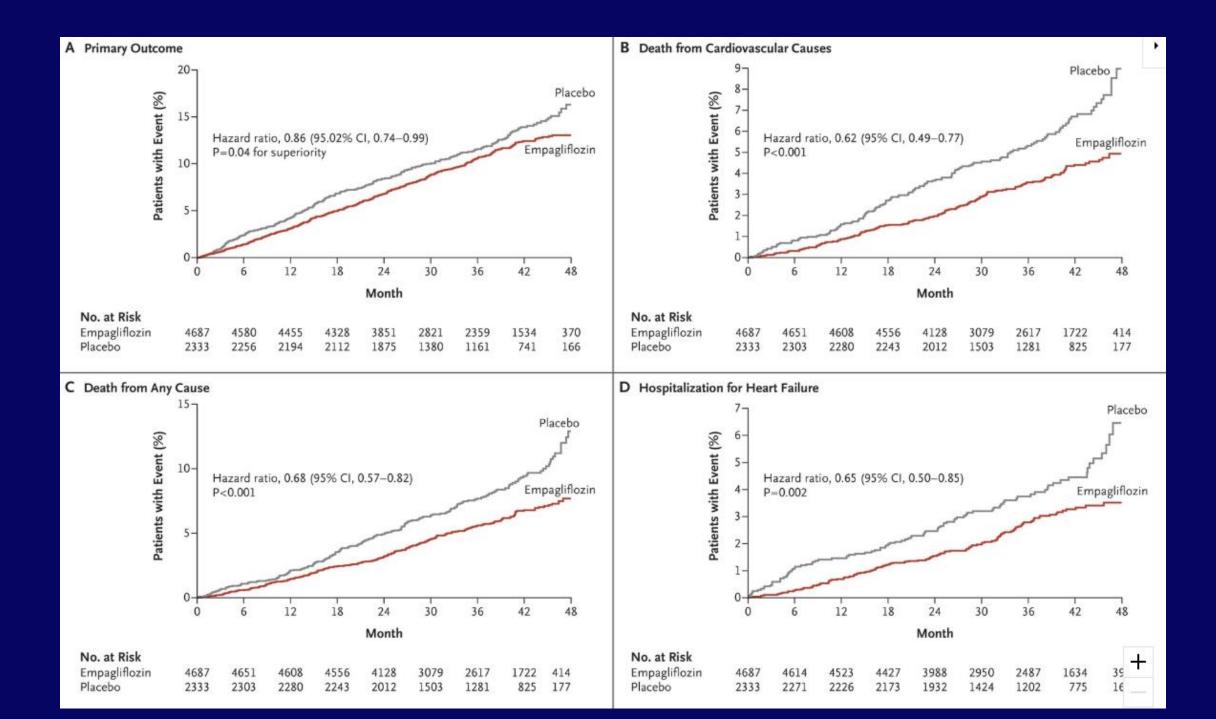
- In patients with T2DM + CKD, and eGFR ≥30 ml/min/1.73 m2 → metformin be used as the first-line (1B).
- In patients with T2DM + CKD, and eGFR ≥30 ml/min/1.73 m2, we recommend including an SGLT2i in the treatment regimen (1A).
- In patients with T2DM + CKD who have not achieved glycemic targets despite use of metformin+SGLT2i, or who are unable to use those medications, we recommend GLP-1 RA (1B).


We recommend an individualized HbA1c from <6.5% to <8% in patients with diabetes and non-dialysis CKD (1C)



Class	Drugs	CKD stage 3 and 4	CKD stage 5 and dialysis	Major Complication
Sulfonylureas	Glipizide	No dose adjustment	No dose adjustment	
	Glyburide	Avoid	Avoid	Hypoglycemia
	Glimepiride	Initiate at low dose, 1 mg daily	Avoid	
Alpha-glucosidase inhibitors	Acarbose	Not recommended in patients with serum Cr >2 mg/dL	Avoid	lleus, hepatic toxicity
Biguanides	Metformin	Avoid when GFR <30 Probably safe when GFR≥ 45 ml/min/1.73 m2	Avoid	Lactic acidosis
Meglitinides	Repaglinide	CCr 20-40 ml/min: 0.5 mg before meals: titrate with caution	HD: not defined	Liun a chuan màr
	Nateglinide	Initiate at low dose, 60 mg before each meal	HD: not defined	Hypoglycemia
Thiazolidinediones	Pioglitazone	No dose adjustment	No dose adjustment	Black box warning: CHF
Incretin mimetic	Exenatide	CCr 30-50: caution with advised CCr <30 : avoid	Avoid	Pancreatitis
DPP-4 inhibitors	Linagliptin	No dose adjustment	No dose adjustment	
	Saxagliptin	CCr<50: 2.5 mg po OD	HD: give dose after dialysis	
	Alogliptin	CCr 30-59: 12.5 mg po OD CCr <30: 6.25 mg po OD	6.25 mg po OD	
	Sitagliptin	CCr 30-49: 50 mg po OD CCr <30: 25 mg po OD	25 mg po OD	
	Vildaglitin	CCr <50: 50 mg po OD	50 mg PO OD	
SGLT2 inhibitors	Canagliflozin	GFR 49-59: 100 mg po OD GFR 30-44: avoid GFR<30: contraindication	Avoid	UTI,
	Dapaglitflozin	GFR 30-59: avoid GFR<30: contraindication	Avoid	vulvovaginitis, hypotension
	Empagliflozin	GFR 30-44: avoid GFR<30: contraindication	Avoid	

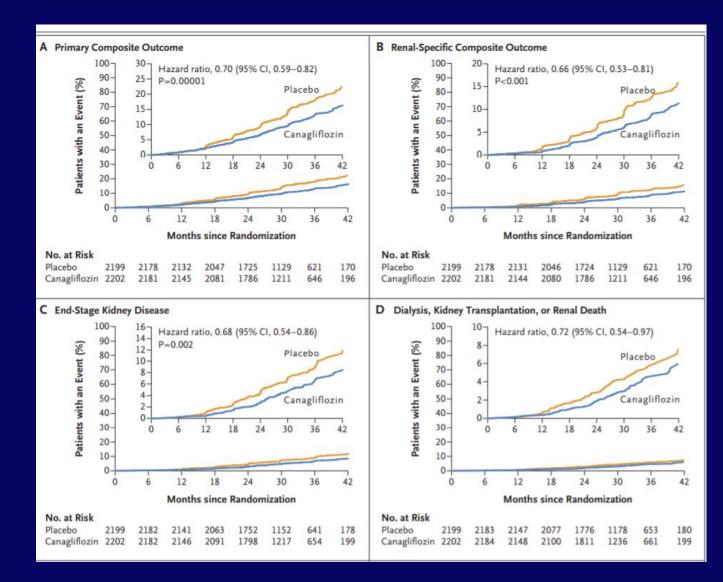
SGLT 2 INH

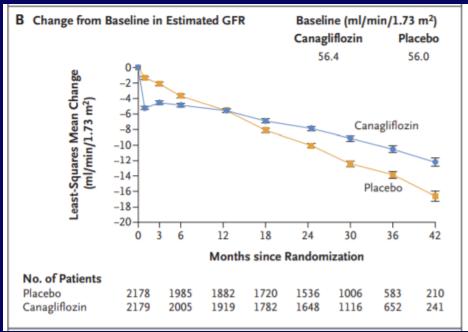


EMPA-REG OUTCOME Trial

- 7,020 adult patients with type 2DM at high cardiovascular risk
- A randomized, double-blind, placebo-controlled trial to assess the effect of once-daily empagliflozin (either 10 mg or 25 mg) versus placebo

CONCLUSIONS : Patients with type 2 diabetes at high risk for cardiovascular events who received empagliflozin, as compared with placebo, had a lower rate of the primary composite cardiovascular outcome and of death from any cause when the study drug was added to standard care.



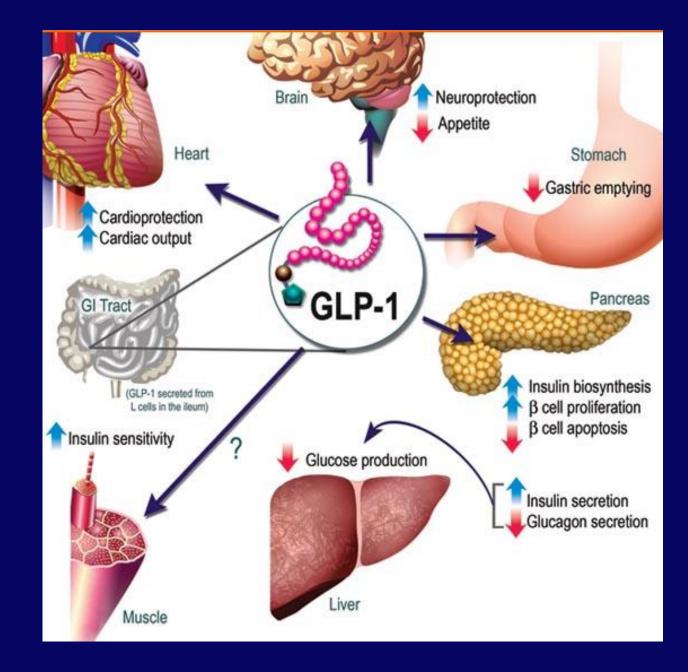

Table 3. End points of the EMPA-REG OUTCOME Trial

Outcome	Hazard Ratio Compared with Placebo (95% CI)
Prespecified Primary MACE (CV death, nonfatal MI, or nonfatal stroke) CV death All-cause mortality Hospitalization for heart failure	0.86 (0.74 to 0.99) 0.62 (0.49 to 0.77) 0.68 (0.57 to 0.82) 0.65 (0.50 to 0.85)
Exploratory New onset of macroalbuminuria New onset or worsening of DKD Doubling of serum creatinine ^a Initiation of RRT	0.62 (0.54 to 0.72) 0.61 (0.53 to 0.70) 0.56 (0.39 to 0.79) 0.45 (0.21 to 0.97)

Canagliflozin and Renal Outcomes in Type 2 Diabetes and Nephropathy

- 4,401 adult patients with type 2DM and albuminuric CKD
 - GFR 30-89ml/min/1.73m2
 - UACR >300 to 5000 mg/g Cr
- A randomized, double-blind, placebo-controlled trial to assess the effect of Canaglifozin versus placebo
- The primary outcome was a composite of end-stage kidney disease (dialysis, transplantation, or a sustained eGFR <15ml/min/1.73m2, a doubling of serum Cr, or death from renal or cardiovascular causes.

N Engl J Med 2019;380:2295-306

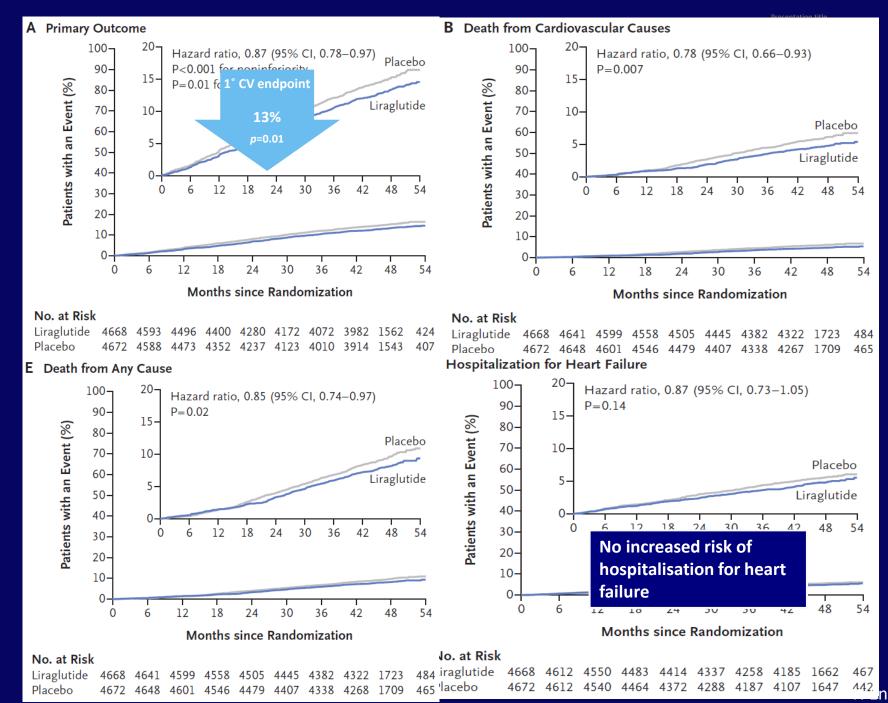


Current status of diabetic nephropathy treatment

Investigational	 Antioxidants: NAC, Nox inhibitors etc PKC inhibition: Ruboxistaurin Antifibrotic therapies: Anti-TGF-B Ab XO inhibitors: Allopurinol, febuxostat Chemokine modulation: Anti-CCR2/5 Matrix metalloproteinase inhibition
Novel	 DPP-4 inhibitors SGLT-2 inhibitors Selective ET receptor antagonsim VDR activators MRA
Established	 RAS blockade: ACEi, ARB Blood pressure control Glycemic regulation

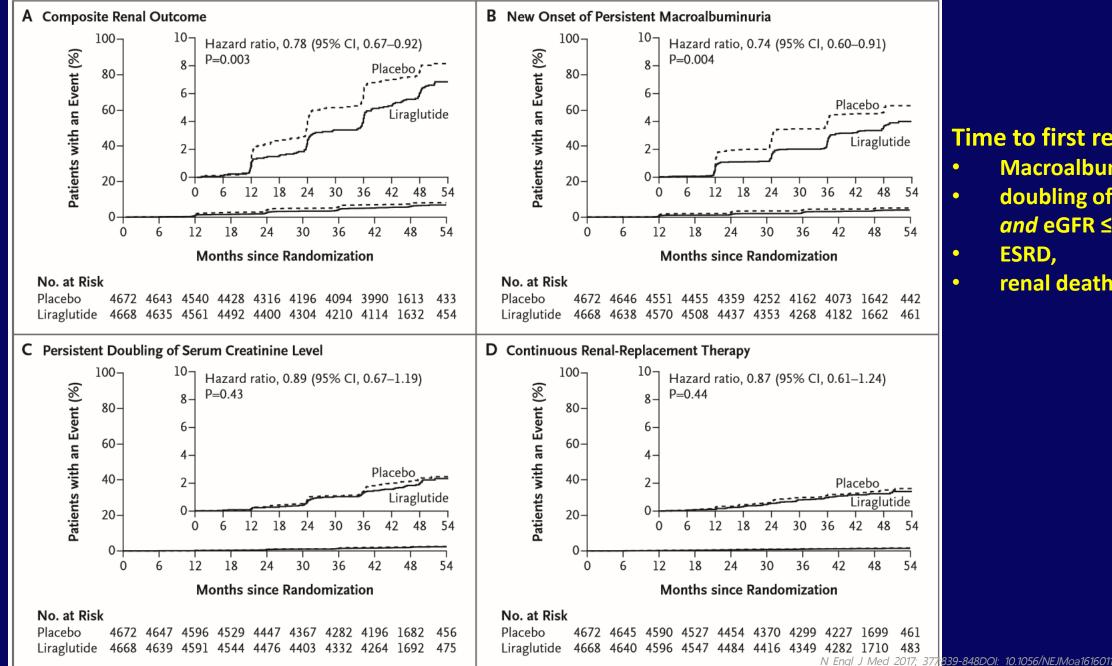
Liraglutide

- long-acting <u>g</u>lucagon like peptide 1 receptor agonist (GLP-1)
- Adverse effect : pancreatitis, thyroid cancer


ORIGINAL ARTICLE

Liraglutide and Cardiovascular Outcomes in Type 2 Diabetes

Steven P. Marso, M.D., Gilbert H. Daniels, M.D., Kirstine Brown-Frandsen, M.D.,


- Multicenter, double-blind, placebo-controlled trial at 410 sites in 32 countries.
- 9,340 Patients with type 2 diabetes who were at high risk for cardiovascular disease were randomly assigned, in a 1:1 ratio, to receive liraglutide or placebo.

CONCLUSIONS : In the time-to-event analysis, the rate of the first occurrence of death from cardiovascular causes, nonfatal myocardial infarction, or nonfatal stroke among patients with type 2 diabetes mellitus was lower with liraglutide than with placebo.

1

ngl J Med 2016; 375:311-322

Time to first renal event

- Macroalbuminuria,
- doubling of serum Cr and eGFR ≤45,
- renal death

Thank you for your attention